• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Neurons and glia collaborate to drive neural regeneration following brain injury

Bioengineer by Bioengineer
June 17, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

One of the most devastating aspects of stroke and traumatic brain injury is that the neurons we lose are never replaced. This means that depending on the injury site, patients may suffer long-term impairments of crucial motor or cognitive functions, such as language and memory. 

Fly Brain

Credit: Rhiner Lab, The Champalimaud Foundation.

One of the most devastating aspects of stroke and traumatic brain injury is that the neurons we lose are never replaced. This means that depending on the injury site, patients may suffer long-term impairments of crucial motor or cognitive functions, such as language and memory. 

But the brain does have the ability to produce new neurons. It contains reserves of special cells, called neural stem cells, that partially  activate in response to tissue damage. Unfortunately, while many cells begin the process of regeneration, full activation occurs only in a small fraction of stem cells. As a result, few newly-made neurons are produced, and fewer still manage to survive and re-populate the damaged site. Instead, it gets filled with a common type of brain cell called glia, which functions as the “glue” of the nervous system. 

How can we boost neural regeneration? A study published today (June 17) in the journal Developmental Cell may offer a way forward. Scientists at the Champalimaud Foundation in Portugal discovered a novel mechanism by which neurons and glia collaborate to drive this process. “We have revealed how neural stem cells sense injury and are recruited for tissue repair. These findings may be the first step towards developing drugs to promote the formation of new neurons following brain damage”,  said the study’s senior author Christa Rhiner.

CELLULAR COOPERATION

To understand how neural regeneration works, Rhiner’s team turned to the fly and mouse animal models. “Just like ours, their brains also contain neural stem cells”, she explained. “In addition, many signalling molecules and forms of intercellular communication are common to humans, flies and mice. Consequently, the insights we gain from these animal models are likely to be relevant for understanding human physiology.” 

Anabel Simões, a doctoral student in the lab, began by asking what molecules were present exclusively in the injured brain area. Among dozens, one in particular caught her attention. “It was Swim – a transporter protein that quite literally ‘swims’ across the tissue, helping molecules that normally act locally to spread out. Following a thorough investigation, we learned that Swim is critical for mounting a regenerative response to brain injury”, she explained. 

According to Simões, the next logical step was to determine which molecule Swim was carrying. An additional series of experiments uncovered the answer – Wg/Wnt, a known activator of neural stem cells in flies and mammals. 

“We found Wg in neurons in the damaged area, which is remarkable”, said Simões. “It meant that the neurons themselves sense the tissue’s distress and respond to it by trying to send a wakeup signal to dormant neural stem cells.”

Now, there was only one piece left in the puzzle – who was producing Swim? The team found that when oxygen levels drop in the injured brain area, a certain type of glial cells jumps into action. These cells produce Swim and secrete it into the extracellular space. Then, the transporter encapsulates Wg and carries it to the nearest stem cell, effectively turning it on.

“One of the more striking aspects of this mechanism is that it’s collaborative”, said Simões, “Neurons and glia in the affected brain area work together to promote tissue repair.”

GIVING NEURAL REGENERATION A BOOST

The team’s results reveal a novel, cooperative mechanism by which neurons and glia “join forces” to drive neural regeneration. How can these results help make this process more robust?

“Now that we know who the key players are and how they communicate with each other, we have a shot at giving neural regeneration a boost. First, we need to verify that a similar mechanism also exists in humans. Then, we can begin thinking about translating these findings into therapies”, said Rhiner. “These results also prompt many follow-up questions that we are looking forward to investigating next. For instance, how can we help new neurons survive in the tissue as it heals? It’s a fascinating journey, and we’re excited to see what we will find next”, she concluded. 



Journal

Developmental Cell

DOI

10.1016/j.devcel.2022.05.015

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Damage-responsive neuro-glial clusters coordinate the recruitment of dormant neural stem cells in Drosophila.

Article Publication Date

17-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Rewrite Organic-inorganic covalent selenium reversing ischemic reperfusion injury as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Rewrite Nuclear PKM2: a signal receiver, a gene programmer, and a metabolic modulator as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Boosting Graduate Seminar Engagement with Active Learning

August 28, 2025

Study Finds Lack of Strong Evidence Supporting Alternative Autism Treatments

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Insulin resistance in school-age children: comparison surrogate diagnostic markers as a headline for a science magazine post, using no more than 8 words

Rewrite Validation of the cancer fatigue scale (CFS) in a UK population as a headline for a science magazine post, using no more than 7 words

Rewrite Recyclable luminescent solar concentrator from lead-free perovskite derivative as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.