• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tenascin proteins inhibit regeneration of cell envelope

Bioengineer by Bioengineer
June 17, 2022
in Biology
Reading Time: 3 mins read
0
Juliane Bauch
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Ruhr-Universität Bochum have been studying the role of the two proteins tenascin C and tenascin R in multiple sclerosis. In this disease, cells of the immune system destroy the myelin sheaths, i.e. the sheaths of the nerve cells. As the Bochum team showed in experiments with mice, the regeneration of the myelin sheaths is inhibited if the two tenascins are present. Dr. Juliane Bauch and Professor Andreas Faissner from the Cell Morphology and Molecular Neurobiology Department in Bochum report their findings in the journal Cells, published online on 28 May 2022.

Juliane Bauch

Credit: RUB, Kramer

Researchers at Ruhr-Universität Bochum have been studying the role of the two proteins tenascin C and tenascin R in multiple sclerosis. In this disease, cells of the immune system destroy the myelin sheaths, i.e. the sheaths of the nerve cells. As the Bochum team showed in experiments with mice, the regeneration of the myelin sheaths is inhibited if the two tenascins are present. Dr. Juliane Bauch and Professor Andreas Faissner from the Cell Morphology and Molecular Neurobiology Department in Bochum report their findings in the journal Cells, published online on 28 May 2022.

The reason why multiple sclerosis results in a destruction of the myelin sheaths hasn’t been identified as yet. “But the organism has various mechanisms at its disposal to partially compensate for the lesions,” says Juliane Bauch, who studied this issue in great detail in her doctoral thesis. Her research aims at identifying approaches that could improve the regeneration of myelin sheaths.

Tenascins impede regeneration of nerve cell envelopes

Tenascin C and tenascin R are components of the extracellular matrix, i.e. the scaffolding in which cells are embedded. The extracellular matrix acts on the cells, such as oligodendrocytes, which form the myelin sheaths. To study the influence of the two tenascins on the regeneration of myelin sheaths, the researchers treated mice with the drug Cuprizone, which destroys the myelin sheaths. After Cuprizone was discontinued, Bauch and Faissner monitored how well the myelin sheaths regenerated.

The researchers compared the process in mice that produced tenascin C and tenascin R as usual and in genetically modified mice that lacked the two tenascins. For this purpose, they created tissue sections of the brain and analysed the thickness of the myelin sheaths. Mice without tenascin C and R were able to rebuild the myelin sheaths faster and more effectively.

Different effects of the two proteins

In addition, Juliane Bauch and Andreas Faissner examined the mechanisms by which the proteins impeded the regeneration process. Tenascin C limited the number of myelin sheaths that were formed. Tenascin R triggered the prevalence of the protein CD68, which drives acute inflammation. Both proteins are also known to limit the movement of oligodendrocytes. Moreover, during myelin membrane repair, they inhibit the development of the protein MBP that is important for myelin membrane formation.

“Our research results open up new therapeutic approaches for the treatment of demyelinating diseases such as multiple sclerosis. The impact of the extracellular matrix on the restoration of myelin membranes is enormous and could become a key target for therapy in the future,” concludes Juliane Bauch.



DOI

10.3390/cells11111773

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.