• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Grasslands hold potential for increased food production

Bioengineer by Bioengineer
January 11, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

About 40% of natural grasslands worldwide have potential to support increased livestock grazing, according to a new study published in the journal Global Change Biology. This translates to a potential increase of 5% in milk production and 4% in meat production compared to the year 2000 or allow for 2.8 million square kilometers of grassland area to be released from production.

In order to feed the world's growing population, global food production will need to increase–but at the same time food production systems have impacts on the environment and climate. Livestock products, including meat and milk, are a major food source for millions of people, and demand for these products is increasing. However, livestock and conversion of land for increased livestock production can lead to increased greenhouse gas emissions or soil erosion through overgrazing.

"Grasslands are generally regarded to play an important role in increasing food production to meet future food demand," says Tamara Fetzel, a researcher at the Institute of Social Ecology in Vienna (Alpen Adria University), who led the study as part of her participation in the 2015 Young Scientists Summer Program at IIASA. "But to achieve this target in a sustainable manner, our study suggests that we should focus on making more efficient use of currently available land resources, instead of converting land from other uses."

How much livestock grasslands can support depends on a number of variables including climatic, biological, and socio-economic factors such as management, storage systems, and biomass conservation. In the new study, the researchers explored the impact of seasonal patterns of biomass supply on the potential dynamics of grass-based livestock systems, at a global scale. Fetzel and colleagues identified areas where additional biomass could potentially be extracted from the landscape, by comparing the current level of grazing intensity to the maximum levels supported in periods of minimum biomass supply, such as winter or dry periods. The authors also discuss numerous socioeconomic and ecological constraints related to unlocking this potential, such as a lack of infrastructure, market access, knowledge, finance, and labor constraints or the impacts of droughts, and potential negative trade-offs such as loss of biodiversity or soil degradation.

"Grassland productivity and intensification potential are some of the most uncertain parameters in global land-use assessments and are often used to estimate ambitious GHG mitigation targets. Making estimates of potential maximum grazing intensity more realistic by considering seasonal constraints reveals a certain potential to increase grazing intensity in some places, yet shows that the actual grassland area available for other purposes remains limited," says IIASA researcher Petr HavlĂ­k, a study coauthor who advised Tamara Fetzel during the YSSP together with Karl-Heinz Erb from the Institute of Social Ecology Vienna .

###

Reference

Fetzel T, Havlik P, Herrero M, Erb K-H (2016). Seasonality constraints to livestock grazing intensity. Global Change Biology http://pure.iiasa.ac.at/14184/

Media Contact

Katherine Leitzell
[email protected]
43-223-680-7316
@IIASAVienna

http://www.iiasa.ac.at

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Reveals Disparities in Cancer Care Quality Among Incarcerated Individuals

November 5, 2025
AI Accelerates Antibody Design to Combat Emerging Viruses, According to New Study

AI Accelerates Antibody Design to Combat Emerging Viruses, According to New Study

November 5, 2025

Commonly Used Pesticides Linked to Reduced Sperm Count

November 5, 2025

Boosting Light with Dispersion-Engineered Multipass Amplification

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Disparities in Cancer Care Quality Among Incarcerated Individuals

AI Accelerates Antibody Design to Combat Emerging Viruses, According to New Study

Commonly Used Pesticides Linked to Reduced Sperm Count

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.