• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

One step closer to moving things with our thoughts

Bioengineer by Bioengineer
June 12, 2022
in Chemistry
Reading Time: 3 mins read
0
Schematic diagram of remotely mind-controlled metasurfaces via brainwaves.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metamaterials have attracted extensive attention from many fields due to their extraordinary physical properties. It has provided researchers with a new concept of designing artificial materials, bringing vigor and vitality to advanced functional materials. As the two-dimensional counterpart to metamaterials, metasurfaces have unprecedented freedom in manipulating EM waves.

Schematic diagram of remotely mind-controlled metasurfaces via brainwaves.

Credit: by Ruichao Zhu, Jiafu Wang, Tianshuo Qiu, Yajuan Han, Xinmin Fu, Yuzhi Shi, Xingsi Liu, Tonghao Liu, Zhongtao Zhang, Zuntian Chu, Cheng-Wei Qiu, Shaobo Qu

Metamaterials have attracted extensive attention from many fields due to their extraordinary physical properties. It has provided researchers with a new concept of designing artificial materials, bringing vigor and vitality to advanced functional materials. As the two-dimensional counterpart to metamaterials, metasurfaces have unprecedented freedom in manipulating EM waves.

 

Through on-site programming, programmable metasurfaces (PMs) with multiple or switchable functions can be realized and further integrated with sensors or driven by pre-defined software. The self-adaptability significantly improves the response rate by removing human involvement. The switches among different functions on these PMs generally rely on manual operation. The fundamental framework is wire-connected, manually-controlled and non-real-time switched. Therefore, it is fascinating to construct an entire framework that can realize remote, wireless, real-time, mind-controlled functional metasurfaces

 

In a new paper published in eLight, a joint team of scientists led by Professor Shaobo Qu & Professor Jiafu Wang from Air Force Engineering University and Professor Cheng-Wei Qiu from the National University of Singapore have advanced the first step towards real-time, remote and wireless mind control of metamaterials. Their paper, titled “Remotely Mind-controlled Metasurface via Brainwaves,” proposes a framework for realizing this goal.

 

Traditionally, the involvement and participation of humans are usually necessary for many scenarios. A human should control the metasurface with their mind directly. It has also been well established that a human’s brain will generate brainwaves in the process of thinking. The authors theorized that collecting brainwaves and using them as the control signals of metasurfaces would allow the users to control metasurfaces with their minds. It would also improve the response rate of metasurfaces. This development would mark an enormous step towards truly intelligent metasurfaces. 

 

The research team achieved remote control by transmitting brainwaves wirelessly from the user to the controller via Bluetooth. The aim was to utilize the user’s brainwaves to control the EM response of PMs. By taking this route, they demonstrated an RMCM where the user could control the scattering pattern.

 

The simulated and test results showed that the user’s brainwaves directly controlled the outcome, with a significantly better control rate and switch rate. That indicates that their model was far superior to any existing model or product in the market. Their design can be further customized to improve the accuracy of their equipment.

 

The research team hopes to combine this with intelligent algorithms and improve the processes in the future. They believe that their work can be readily extended to other mind-controlled functional or multi-functional metasurfaces. It may find applications in areas as diverse as health monitoring, 5G/6G communications, and smart sensors.



Journal

eLight

DOI

10.1186/s43593-022-00016-0

Share12Tweet8Share2ShareShareShare2

Related Posts

“‘Great Unified Microscope’ Enables Visualization of Structures from Micro to Nanoscale”

“‘Great Unified Microscope’ Enables Visualization of Structures from Micro to Nanoscale”

November 14, 2025
Nickel-Catalyzed Regioselective Hydrogen Metallation Cyclization of Alkynylcyclobutanones Enables Synthesis of Bicyclo[2.1.1]hexanes

Nickel-Catalyzed Regioselective Hydrogen Metallation Cyclization of Alkynylcyclobutanones Enables Synthesis of Bicyclo[2.1.1]hexanes

November 14, 2025

Scripps Research Scientists Featured on Clarivate’s Prestigious Highly Cited Researchers List

November 14, 2025

On Average, Humans Spend 78 Minutes Traveling Daily, Independent of Living Standards

November 13, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reevaluating Uterine Closure Techniques in Cesarean Deliveries: A Call for Change

Revolutionary Leap: AI Progresses at the Speed of Light

“‘Great Unified Microscope’ Enables Visualization of Structures from Micro to Nanoscale”

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.