• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Investigators identify a new candidate therapeutic target for Parkinson’s disease

Bioengineer by Bioengineer
June 9, 2022
in Biology
Reading Time: 2 mins read
0
Saranna Fanning and Dennis Selkoe
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The human brain is lipid rich. Lipids and fatty acids contribute to many important cellular processes. Alpha-synuclein — a protein that plays a critical role in Parkinson’s disease (PD) — is known to interact with and alter the balance of lipids and fatty acids. Investigators from the Brigham and Harvard Medical School are exploring how to rebalance fatty acid metabolism in the brain to find new therapeutic approaches for PD and related conditions. Their previous work has led to the identification of an inhibitor of an enzyme called stearoyl-CoA-desaturase, which is now being tested in human clinical trials. In a new study, they identify LIPE, a lipase that degrades triglycerides to produce fatty acids, as a candidate therapeutic target. Inhibiting LIPE reduced the formation of clusters of α-synuclein inclusions and other characteristics associated with PD in patient-derived neurons. LIPE reduction also alleviated neurodegeneration in a C. elegans model of α-synuclein toxicity.

Saranna Fanning and Dennis Selkoe

Credit: Brigham and Women’s Hospital

The human brain is lipid rich. Lipids and fatty acids contribute to many important cellular processes. Alpha-synuclein — a protein that plays a critical role in Parkinson’s disease (PD) — is known to interact with and alter the balance of lipids and fatty acids. Investigators from the Brigham and Harvard Medical School are exploring how to rebalance fatty acid metabolism in the brain to find new therapeutic approaches for PD and related conditions. Their previous work has led to the identification of an inhibitor of an enzyme called stearoyl-CoA-desaturase, which is now being tested in human clinical trials. In a new study, they identify LIPE, a lipase that degrades triglycerides to produce fatty acids, as a candidate therapeutic target. Inhibiting LIPE reduced the formation of clusters of α-synuclein inclusions and other characteristics associated with PD in patient-derived neurons. LIPE reduction also alleviated neurodegeneration in a C. elegans model of α-synuclein toxicity.

“Our research led us to become increasingly aware of the role lipid and fatty acid balance may play in Parkinson’s disease,” said co-corresponding author Saranna Fanning, PhD, of the Ann Romney Center for Neurologic Diseases at the Brigham. “Ultimately, we hope this lipid-related target will have promise as a small-molecule therapy for Parkinson’s disease.”

Co-corresponding author Dennis Selkoe, MD, also of the Ann Romney Center for Neurologic Diseases at the Brigham, added, “The identification of LIPE inhibition and a unique co-regulation of fatty acid synthesis and degradation pathways are further evidence that targeting fatty acid metabolism holds promise for Parkinson’s disease.”

Read more in npj-Parkinson Disease.

 



Journal

npj Parkinson s Disease

DOI

10.1038/s41531-022-00335-6

Method of Research

Experimental study

Subject of Research

Human tissue samples

Article Title

Lipase regulation of cellular fatty acid homeostasis as a Parkinson’s disease therapeutic strategy

Article Publication Date

9-Jun-2022

COI Statement

D.S. is a director and consultant to Prothena Biosciences. All other authors declare no competing financial or non-financial interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Genetic Diversity Patterns in Midwest Slippershell Mussels

Genetic Diversity Patterns in Midwest Slippershell Mussels

October 31, 2025
blank

Lysine-Specific Demethylase Complex Limits EBV Reactivation

October 31, 2025

Novel Method Predicts Protein-DNA Binding Sites Efficiently

October 31, 2025

Haplotype Analysis Links Regulatory Variants to Citrus Traits

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Early Rescue ICSI on IVF Success

AI Model Predicts Vomiting in Pediatric Cancer

Parent-Led Language Therapy Boosts Preterm Infant Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.