• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Grain boundaries go with the flow

Bioengineer by Bioengineer
June 3, 2022
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HOUSTON – (June 6, 2022) – Rice University engineers who mimic atom-scale processes to make them big enough to see have modeled how shear influences grain boundaries in polycrystalline materials. 

GRAIN 1

Credit: Biswal Research Group/Rice University

HOUSTON – (June 6, 2022) – Rice University engineers who mimic atom-scale processes to make them big enough to see have modeled how shear influences grain boundaries in polycrystalline materials. 

That the boundaries can change so readily was not entirely a surprise to the researchers, who used spinning arrays of magnetic particles to view what they suspect happens at the interface between misaligned crystal domains. 

According to Sibani Lisa Biswal, a professor of chemical and biomolecular engineering at Rice’s George R. Brown School of Engineering, and graduate student and lead author Dana Lobmeyer, interfacial shear at the crystal-void boundary can indeed drive how microstructures evolve.

The technique reported in Science Advances could help engineers design new and improved materials. 

To the naked eye, common metals, ceramics and semiconductors appear uniform and solid. But at the molecular scale, these materials are polycrystalline, separated by defects known as grain boundaries. The organization of these polycrystalline aggregates govern such properties as conductivity and strength. 

Under applied stress, grain boundaries can form, reconfigure or even disappear entirely to accommodate new conditions. Even though colloidal crystals have been used as model systems to see boundaries move, controlling their phase transitions has been challenging.  

“What sets our study apart is that in the majority of colloidal crystal studies, the grain boundaries form and remain stationary,” Lobmeyer said. “They’re essentially set in stone. But with our rotating magnetic field, the grain boundaries are dynamic and we can watch their motion.”

In experiments, the researchers induced colloids of paramagnetic particles to form 2D polycrystalline structures by spinning them with magnetic fields. As recently shown in a previous study, this type of system is well suited for visualizing phase transitions characteristic of atomic systems.

Here, they saw that gas and solid phases can coexist, resulting in polycrystalline structures that include particle-free regions. They showed these voids act as sources and sinks for the movement of grain boundaries. 

The new study also demonstrates how their system follows the long-standing Read-Shockley theory of hard condensed matter that predicts the misorientation angles and energies of low-angle grain boundaries, those characterized by a small misalignment between adjacent crystals. 

By applying a magnetic field on the colloidal particles, Lobmeyer prompted the iron oxide-embedded polystyrene particles to assemble and watched as the crystals formed grain boundaries.

“We typically started out with many relatively small crystals,” she said. “After some time, the grain boundaries began to disappear, so we thought it might lead to a single, perfect crystal.”

Instead, new grain boundaries formed due to shear at the void interface. Similar to polycrystalline materials, these followed the misorientation angle and energy predictions made by Read and Shockley more than 70 years ago. 

“Grain boundaries have a significant impact on the properties of materials, so understanding how voids can be used to control crystalline materials offers us new ways to design them,” Biswal said. “Our next step is to use this tunable colloidal system to study annealing, a process that involves multiple heating and cooling cycles to remove defects within crystalline materials.”

The National Science Foundation (1705703) supported the research. Biswal is the William M. McCardell Professor in Chemical Engineering, a professor of chemical and biomolecular engineering and of materials science and nanoengineering.

-30-

Read the abstract at https://www.science.org/doi/10.1126/sciadv.abn5715.

This news release can be found online at https://news.rice.edu/news/2022/grain-boundaries-go-flow.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Models for molecules show unexpected physics: https://news.rice.edu/news/2022/models-molecules-show-unexpected-physics

Biswal Research Group: https://www.ruf.rice.edu/~biswalab/Biswal_Research_Group/Welcome.html

Chemical and Biomolecular Engineering: https://chbe.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Video:

 

 

Rice University engineers mimicked atom-scale grain boundaries with magnetic particles to see how shear stress influenced their movement. The video shows new grain boundaries forming due to shear at the interface between crystals and voids, following misorientation angle and energy predictions made more than 70 years ago. The colors indicate the orientation of the crystals. (Credit: Biswal Research Group/Rice University)

Images for download:

 

https://news-network.rice.edu/news/files/2022/05/0523_GRAIN-1-WEB.jpg

In a Rice University study, a polycrystalline material spinning in a magnetic field reconfigures as grain boundaries appear and disappear due to circulation at the interface of the voids. The various colors identify the crystal orientation. (Credit: Biswal Research Group/Rice University)

 

https://news-network.rice.edu/news/files/2022/05/0523_GRAIN-2-WEB.jpg

Rice University Professor Sibani Lisa Biswal, left, and graduate student Dana Lobmeyer co-authored a study that describes how interfacial shear influences grain boundary movements through colloidal crystals. (Credit: Quan Nguyen/Rice University)

 

https://news-network.rice.edu/news/files/2022/05/0523_GRAIN-3-WEB.jpg

Rice University graduate student Dana Lobmeyer at the custom rig she used to create macro-scale models of shear-induced grain boundary movement and formation. (Credit: Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,052 undergraduates and 3,484 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

 

 

 



Journal

Science Advances

DOI

10.1126/sciadv.abn5715

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Grain boundary dynamics driven by magnetically induced circulation at the void interface of 2D colloidal crystals

Article Publication Date

3-Jun-2022

COI Statement

The authors declare that they have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025
When Ocean Waves Reach the Shoreline

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025

How a Superfluid Transforms into a Solid at the Same Time

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New CEA-Based Surveillance Boosts Gastric Cancer

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

Enhancing Pediatric Nursing Education with Advanced Simulators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.