• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

This parasite will self-destruct: researchers discover new weapon against drug-resistant malaria

Bioengineer by Bioengineer
June 2, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new method to combat malaria which sees the disease turn against itself could offer an effective treatment for the hundreds of millions of people infected globally each year, as the efficacy of current antimalarial drugs weakens.

ML901 mosquito

Credit: Image generated by Leann Tilley and Riley Metcalfe

A new method to combat malaria which sees the disease turn against itself could offer an effective treatment for the hundreds of millions of people infected globally each year, as the efficacy of current antimalarial drugs weakens.

The University of Melbourne-led research published today in Science has identified an anti-malarial compound, ML901, which inhibits the malaria parasite but does not harm mammalian – human or other mammals’ – cells.

Co-lead author Professor Leann Tilley, from the Bio21 Institute at the University of Melbourne, said the ML901 compound effectively made the parasite the agent of its own demise, underpinning it potency and selectivity.

“ML901 works by an unusual reaction-hijacking mechanism,” Professor Tilley said. 

“Imagine a stealth weapon that can be used to launch a self-destruct attack on your vehicle – slamming on the brakes and cutting the engine. ML901 finds a particular chink in the machinery that the malaria parasite uses to generate the proteins needed to reproduce itself and stops it doing so.

“While there is much work to be done to fine tune what we’ve discovered, these results are really encouraging in the search for new antimalarials.”

In the collaboration with Takeda Pharmaceuticals, Medicines for Malaria Medicine – the peak international body for antimalarial drug development – and research labs across five continents, tests were conducted using molecules provided by Takeda, during which the ML901 compound was identified.

Once ML901 entered the parasite, it attached itself to an amino acid and attacked the protein synthesis machinery from the inside, rapidly grinding the parasite to a halt. The molecular structure of human cells means they are not susceptible to attack by ML901.

In tests using both human blood cultures and an animal model of malaria, the team found ML901 killed malaria parasites that had resistance to currently used drugs and showed rapid and prolonged action resulting in excellent parasite killing. 

Professor Tilley said the compound showed it was active against all stages of the lifecycle, meaning it could be used to prevent malaria infections as well as to treat the disease.

“It also shows potential for preventing infected people from transmitting the disease to others, which is critical to stop the spread of malaria.”

Every year, at least 200 million new malaria infections are diagnosed worldwide, causing more than 600,000 deaths in Africa and Southeast Asia. Over the past 50 years, ever increasing levels of resistance to antimalarials has led to an impending crisis, with breakthrough drugs desperately needed.

Professor Tilley said based on these findings the team was ready to pursue the development of new antimalarial drug candidates.

“We believe this is just the beginning. We now have the possibility of finding drugs, similar to ML901, that target a range of deadly infectious diseases, including multi-drug resistant bacterial infections. The work opens up several new drug discovery avenues.” 

Media enquiries: Stephanie Juleff | +61 435 151 096 | [email protected] ­



Journal

Science

DOI

10.1126/science.abn0611

Article Title

Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy

Article Publication Date

2-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing Turkish Nurses’ Evidence-Based Practice Competence

August 31, 2025

Nomograms Enhance Prognosis in ECMO for Septic Shock

August 31, 2025

Tumor Markers Linked to Diabetic Nephropathy in Type 2 Diabetes

August 31, 2025

SGLT2 vs. GLP-1: Outcomes in Diabetes and Kidney Disease

August 31, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bioplastics: Their Environmental Impact and Biodegradability

Assessing Turkish Nurses’ Evidence-Based Practice Competence

Empowering the Visually Impaired: Multilingual Visual Q&A

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.