• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New blood test can help doctors diagnose tuberculosis and monitor treatment

Bioengineer by Bioengineer
June 1, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Tulane University School of Medicine have developed a new highly sensitive blood test for tuberculosis (TB) that screens for DNA fragments of the Mycobacterium tuberculosis bacteria that causes the deadly disease.

Dr. Tony Hu

Credit: Sally Asher, Tulane University

Researchers at Tulane University School of Medicine have developed a new highly sensitive blood test for tuberculosis (TB) that screens for DNA fragments of the Mycobacterium tuberculosis bacteria that causes the deadly disease.

The test could give doctors a new tool to both quickly identify TB and then gauge whether drug treatments are effective by monitoring levels of DNA from the pathogen circulating through the bloodstream, according to a new study published in the journal The Lancet Microbe.

Tuberculosis is now the second most deadly infectious disease in the world, behind only COVID-19. In 2020, an estimated 10 million people contracted TB and 1.5 million people died from it, according to the World Health Organization. 

Most TB tests rely on screening sputum, a thick type of mucus from the lungs. But collecting sputum from patients suspected of having TB can be difficult, especially for children. TB can also be harder to diagnose in immunocompromised HIV patients and others where the infection migrates outside of the lungs into other areas of the body. In these extrapulmonary cases, patients can have little bacteria in the sputum, which leads to false negatives using current testing methods, said lead study author Tony Hu, PhD, Weatherhead Presidential Chair in Biotechnology Innovation at Tulane University.

“This assay may be a game-changer for TB diagnoses that not only provides accurate diagnosis results but also has the potential to predict disease progression and monitor treatment,” Hu said. “This will help doctors rapidly intervene in treatment and reduce the risk of death, especially for children living with HIV.”

The study evaluated a CRISPR-based assay that screened for cell-free DNA from live Mycobacterium tuberculosis bacilli. The screening target is released into the bloodstream and cleared quite rapidly, providing a real-time snapshot of active infection.

Researchers tested preserved blood samples from 73 adults and children with presumptive TB and their asymptomatic household contacts in Eswatini, Africa. 

The test identified adult TB with 96.4% sensitivity and 94.1% specificity and pediatric TB with 83.3% sensitivity and 95.5% specificity. (Sensitivity refers to how well a test can diagnose a positive case, while specificity is a measure of a test’s accurately determining a negative case.)

Researchers also tested 153 blood samples from a cohort of hospitalized children in Kenya. These were HIV-positive patients who were at high risk for TB and presented with at least one symptom of the disease. The new test picked up all 13 confirmed TB cases and almost 85% of unconfirmed cases, which were cases that were diagnosed due to clinical symptoms and not existing gold standard testing methods.

The CRISPR-based test uses a small blood sample and can deliver results within two hours.

“We are particularly excited that the level of Mycobacterium tuberculosis cell-free DNA in HIV-infected children began to decline within a month of treatment, and most of the children’s blood was cleared of the bacteria DNA fragments after treatment, which means that CRISPR-TB has the potential to monitor treatment and will give physicians the ability to better treat worldwide TB infections,” Hu said.

The researchers have since adapted the assay to a rapid test platform that can deliver results in 30 minutes without any special equipment. Results would be viewable on a paper strip like a rapid COVID-19 test.  

“A highly accurate, rapid blood test that could be used anywhere would benefit millions of people living in resource-limited areas with a high TB burden,” Hu said.

The full results of the paper are available here. 



Method of Research

Experimental study

Subject of Research

People

Article Title

CRISPR detection of circulating cell-free Mycobacterium tuberculosis DNA in adults and children, including children with HIV: a molecular diagnostics study

Article Publication Date

31-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

August 28, 2025

Enhancing Pediatric Nursing Education with Advanced Simulators

August 28, 2025

Stem Cell Co-Grafts Enhance Retinal Repair in Rats

August 28, 2025

Pennington Biomedical Study Suggests Metabolic Health During Pregnancy May Impact Outcomes More Than Weight Gain

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New CEA-Based Surveillance Boosts Gastric Cancer

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

Enhancing Pediatric Nursing Education with Advanced Simulators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.