• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Seeing how odor is processed in the brain

Bioengineer by Bioengineer
May 28, 2022
in Chemistry
Reading Time: 5 mins read
0
Participant wearing an EEG cap and using the odor delivery device
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A specially created odor delivery device, along with machine learning-based analysis of scalp-recorded electroencephalogram, has enabled researchers at the University of Tokyo to see when and where odors are processed in the brain. The study found that odor information in the brain is unrelated to perception during the early stages of being processed, but when perception later occurred, unpleasant odors were processed more quickly than pleasant odors. Problems with odor perception can be an early symptom of neurodegenerative diseases, so uncovering more of the neural bases of odor perception could help towards better understanding of those diseases in future.

Participant wearing an EEG cap and using the odor delivery device

Credit: Mugihiko Kato

A specially created odor delivery device, along with machine learning-based analysis of scalp-recorded electroencephalogram, has enabled researchers at the University of Tokyo to see when and where odors are processed in the brain. The study found that odor information in the brain is unrelated to perception during the early stages of being processed, but when perception later occurred, unpleasant odors were processed more quickly than pleasant odors. Problems with odor perception can be an early symptom of neurodegenerative diseases, so uncovering more of the neural bases of odor perception could help towards better understanding of those diseases in future.

 

Does the smell of a warm cup of coffee help you start your day the right way? Or can you not stand the strong, heady stuff? According to new research, how quickly your brain processes the smell of your morning beverage might depend on whether you think that odor is pleasant or not.

 

A team at the University of Tokyo created a special device that can deliver 10 diverse odors in a way that is accurate and timely. The odors were administered to participants who rated their pleasantness while wearing noninvasive scalp-recorded electroencephalogram (EEG) caps, which record signals inside the brain. The team was then able to process the EEG data using machine learning-based computer analysis, to see when and where the range of odors was processed in the brain with high temporal resolution for the first time.

 

“We were surprised that we could detect signals from presented odors from very early EEG responses, as quickly as 100 milliseconds after odor onset, suggesting that representation of odor information in the brain occurs rapidly,” said doctoral student Mugihiko Kato from the Graduate School of Agricultural and Life Sciences at the University of Tokyo.

 

Detection of odor by the brain occurred before the odor was consciously perceived by the participant, which didn’t happen until several hundred milliseconds later. “Our study showed that different aspects of perception, in particular odor pleasantness, unpleasantness and quality, emerged through different spatial and temporal cortical processing,” said Kato.

 

“The representation of unpleasantness in the brain emerged earlier than pleasantness and perceived quality,” said Project Associate Professor Masako Okamoto, also from the Graduate School of Agricultural and Life Sciences. When unpleasant odors (such as rotten and rancid smells) were administered, participants’ brains could differentiate them from neutral or pleasant odors as early as 300 milliseconds after onset. However, representation of pleasant odors (such as floral and fruity smells) in the brain didn’t occur until 500 milliseconds onwards, around the same time as when the quality of the odor was also represented. From 600-850 milliseconds after odor onset, significant areas of the brain involved in emotional, semantic (language) and memory processing then became most involved.

 

The earlier perception of unpleasant odors may be an early warning system against potential dangers. “The way each sensory system recruits the central nervous system differs across the sensory modalities (smell, light, sound, taste, pressure and temperature). Elucidating when and where in the brain olfactory (smell) perception emerges helps us to understand how the olfactory system works,” said Okamoto. “We also feel that our study has broader methodological implications. For example, it was not known that scalp-recorded EEG would allow us to assess representation of odors from time periods as early as 100 milliseconds.”

 

This high temporal resolution imaging of how our brains process odors may be a stepping stone towards better understanding the mechanisms of neurodegenerative diseases in future, such as Parkinson’s and Alzheimer’s diseases, in which a dysfunction in the sense of smell is an early warning sign. The team is interested in exploring several further research avenues. “In our daily life, odors are perceived along with other sensory information like vision, and each sense influences the perception of the other,” said Kato. “Although we presented olfactory stimuli alone in the current study, we think that analyzing brain activity under more natural conditions, such as presenting odors with a movie, is important.” Perhaps Smell-O-Vision might yet make a comeback?

###

Journal article

Mugihiko Kato, Toshiki Okumura, Yasuhiro Tsubo, Junya Honda, Masashi Sugiyama, Kazushige Touhara, Masako Okamoto “Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding”. PNAS. https://doi.org/10.1073/pnas.211496611

Funding

This work was supported by the Grant-in-Aid for Scientific Research on Innovative Areas from Japan Society for the Promotion of Science to M.O. (18H04998 and 21H05808) and JST-Mirai program to K.T. (JPMJMI17DC and JPMJMI19D1).

 

Useful Links

Link to Lab: https://www.a.u-tokyo.ac.jp/english/  

 

Research Contact(s)

Project Associate Professor Masako Okamoto

Department of Applied Biological Chemistry

Graduate School of Agricultural and Life Sciences

The University of Tokyo,

1-1-1 Yayoi , Bunkyo-ku,

Tokyo 113-8657, Japan

Tel: +81-3-5841-5109

Email: [email protected]

 

Professor Kazushige Touhara

Department of Applied Biological Chemistry

Graduate School of Agricultural and Life Sciences

The University of Tokyo,

1-1-1 Yayoi, Bunkyo-ku,

Tokyo 113-8657, Japan

(tel)+81-3-5841-5109

Email: [email protected]

 

Press Contact
Mrs. Nicola Burghall (she/ her)
Public Relations Group, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
Email: [email protected]

 

About the University of Tokyo
The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.211496611

Method of Research

Experimental study

Subject of Research

People

Article Title

Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding

Article Publication Date

18-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Detecting Cocaine Exposure in Children via Hair Analysis

Pbk Boosts Myoblast Differentiation and Muscle Regeneration

Enhancing Pediatric Telemedicine and Medication Delivery in Haiti

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.