• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Professional ‘guilds’ of bacteria gave rise to the modern microbiome

Bioengineer by Bioengineer
May 26, 2022
in Biology
Reading Time: 3 mins read
0
Collecting marine invertebrate samples off Calvert Island, British Columbia, Canada
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Even the smallest marine invertebrates—some barely larger than single-celled protists—are home to distinct and diverse microbial communities, or microbiomes, according to new research from University of British Columbia (UBC) biologists.

Collecting marine invertebrate samples off Calvert Island, British Columbia, Canada

Credit: University of British Columbia.

Even the smallest marine invertebrates—some barely larger than single-celled protists—are home to distinct and diverse microbial communities, or microbiomes, according to new research from University of British Columbia (UBC) biologists.

The study underscores that a vast diversity of animals have microbiomes, just as humans do. But more surprisingly, there’s little correlation between how closely related most animals are and how similar their microbiomes are—something widely assumed to be true based on the study of humans, larger mammals, and insects.

“This says a lot about how microbiomes originated and how they evolve today,” says UBC evolutionary microbiologist Dr. Patrick Keeling, senior author of the paper published today in Nature Microbiology.

“People might intuitively think the purpose of a microbiome is to be of benefit to the host animal, and that they co-evolve together. But the bacteria could care less about helping the animal host—they have their own agenda.”

“Most animals harbour a community of bacteria that are simply good at living in animals. From this ‘professional guild’ of animal specialists likely evolved the more elaborate, co-evolving microbiomes that are well studied in humans and insects. But as we looked at a broader set of smaller marine animals, it became clear that the microbiomes of bigger creatures are likely exceptions, not the rule.”

The team found the microbiomes of the tiny creatures differ from the microbes living in the surrounding environment, and often differed from the microbiome of even closely related invertebrates.

Digging into the microbiomes of marine invertebrates

In what might be the broadest study of its kind, Dr. Keeling and colleagues sequenced the microbiomes from 1,037 animals from 21 phyla – covering most animals. Some of the lineages of animals sampled more broadly included Annelida (ringed worms), Arthropoda (the largest phylum in the animal kingdom) and Nematoda (a phylum of unsegmented, cylindrical worms). The researchers also collected samples from the surrounding habitats in British Columbia, Canada and Curaçao, a Dutch Caribbean island.

“Studying such a broad range of animals was crucial–in a smaller study a number of prevalent bacteria may have been mistaken for host-specific symbionts,” says Dr. Corey Holt, a postdoctoral fellow at UBC and one of the study’s first authors.

“We found most bacteria were only present in some individuals of a species, and most of these were also present other host species in the same environment.”

Exploring evolutionary time scales

“This survey was designed to look at an incredibly broad diversity of animals,” says Dr. Keeling. “The next step is to take a few of the more interesting groups and dig deeper to see how microbiomes evolved within that group to clarify the time scales at which different evolutionary processes are operating.”

The international team included researchers from UBC, the Hakai Institute, the University of Copenhagen, Universidad Autónoma de Madrid, the Polish Academy of Sciences, the Swedish Museum of Natural History, and the University of Hamburg.

The work was funded by the Tula Foundation’s Hakai Institute, the Natural Sciences and Engineering Research Council, the Gordon and Betty Moore Foundation, and the Canadian Graduate Scholarship programme.



Journal

Nature Microbiology

DOI

10.1038/s41564-022-01125-9

Method of Research

Experimental study

Article Title

Microbiomes of microscopic marine invertebrates do not reveal signatures of phylosymbiosis

Article Publication Date

26-May-2022

COI Statement

None.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Zoonotic Intestinal Protozoa Found in Hebei Wildlife

November 15, 2025
Exploring Genetic Factors in Pain Post-Root Canal

Exploring Genetic Factors in Pain Post-Root Canal

November 15, 2025

Blighia sapida Extract Fights Malaria, Protects Liver

November 15, 2025

Africa’s Tick Diversity and Emerging Pathogens Explored

November 15, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Zoonotic Intestinal Protozoa Found in Hebei Wildlife

Exploring Genetic Factors in Pain Post-Root Canal

Virally Delivered siRNA Targets MUC5AC to Combat Asthma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.