• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

HKU Conservation Forensics Lab develops novel environmental DNA monitoring method for identifying rare and endangered fish species sold in Hong Kong wet markets

Bioengineer by Bioengineer
May 25, 2022
in Biology
Reading Time: 4 mins read
0
Image 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a paper recently published in Methods in Ecology and Evolution, researchers in the Conservation Forensics Lab at The University of Hong Kong have outlined a powerful new tool for monitoring trade of rare and endangered fish species in Hong Kong wet markets. Using environmental DNA (eDNA) present in the drain runoff water of fish markets, researchers were able to extract and sequence enough DNA to identify over 100 species of fish that had passed through the market.

Image 1

Credit: The University of Hong Kong

In a paper recently published in Methods in Ecology and Evolution, researchers in the Conservation Forensics Lab at The University of Hong Kong have outlined a powerful new tool for monitoring trade of rare and endangered fish species in Hong Kong wet markets. Using environmental DNA (eDNA) present in the drain runoff water of fish markets, researchers were able to extract and sequence enough DNA to identify over 100 species of fish that had passed through the market.

Various types of vulnerable or endangered species were detected by the eDNA method in the study, including Epinephelus fuscoguttatus, a type of brown marbled grouper which is listed as vulnerable and decreasing according to The International Union for Conservation of Nature (IUCN), and three eel species including Anguilla japonica and Anguilla rostrata, which are listed as endangered by IUCN, as well as CITES(Convention on International Trade in Endangered Species of Wild Fauna and Flora)-listed European eel, Anguilla anguilla. Two types of bream were detected including the golden threadfin bream (Nemipterus virgatus) which is listed as vulnerable by the IUCN, and the Okinawa seabream (Acanthopagus sivicolus), listed as vulnerable and decreasing by the IUCN.

Metabarcoding Allows Identification of Species At Once
Barcoding is a common method of species identification, wherein certain regions of an organism’s genome are sequenced and used to identify the organism in question. Each species has its own unique ‘barcode’, which can provide a more reliable form of identification than traditional morphology-based methods. This technique can be expanded to identifying many species at once (known as metabarcoding) thanks to advanced high-throughput sequencing technology. Even the small amounts of DNA shed from plants and animals into the environment (eDNA) are sufficient for metabarcoding which enables identification of mixed communities of species that may have been present in the area.

In this study, researchers in the Conservation Forensics Lab aimed to develop a method for identifying fish species traded in Hong Kong markets that does not rely on having fish taxonomy experts spend hours visually identifying every fish on sale. Further, many fish vendors are often reluctant to permit lengthy inspections of their wares, as endangered fish species can often be found for sale in Hong Kong markets.

The method outlined in the paper compared the two most common types of eDNA capture: filtration and precipitation. In the filtration method, one litre of water collected from the drains in three wet markets was collected and passed through a fine filter, which captured tissue, blood, and other cellular debris holding enough DNA to make an identification of the fish species that shed it. The precipitation method used even less water, enabling identification of fish species present by chemical precipitation of eDNA present in cellular debris from 45 ml of drain runoff. After the drain water was collected, eDNA was extracted and sequenced and fish species present in the three wet markets investigated over a 5-day period were identified. To confirm the results, an expert fish taxonomist performed a visual survey, and the overlap of species detections were compared.

High Reliability and Easy to Adapt
While it is impossible to be 100% certain in identifying every single species present with either method, the advantages of a DNA-based survey method are numerous. Chiefly, DNA-based IDs can be more reliable than morphological IDs, and this is especially true when fish are sold butchered or belong to certain similar-looking genera and families. The DNA extraction method outlined in the paper is also very simple and can easily be executed by anyone with basic molecular lab training of several hours. Visual surveys require hours and hours of extensive work by multiple expert taxonomists, which has been a factor holding back rollout of regular surveys in Hong Kong.

‘We hope that our method will not only encourage local authorities to adopt more high-tech solutions to monitoring and combatting the illegal wildlife trade in Hong Kong, but also help expand the use of eDNA and metabarcoding further into urban contexts,’ said John L RICHARDS, co-author of the journal paper.

About HKU Conservation Forensics Lab
Working towards the conservation of illegally traded wildlife in Hong Kong, members of the Conservation Forensics Lab at HKU are trained in various tools and techniques for identifying the legality of seized species. In order to support government and conservation efforts in curbing the trade of threatened species, the lab provides a platform for interdisciplinary scientific research and education to the general public. For more information about the Lab, please visit: https://www.ccf-hku.com

Link of journal paper: https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13842

Image download and caption: https://www.scifac.hku.hk/press

For media enquiries, please contact Ms Casey To, External Relations Officer (tel: (852) 3917-4948; email: [email protected]) / Ms Cindy Chan, Assistant Director of Communications of HKU Faculty of Science (tel: (852) 3917-5286; email: [email protected]).



Journal

Methods in Ecology and Evolution

DOI

10.1111/2041-210X.13842

Article Title

Development of an eDNA-based survey method for urban fish markets

Article Publication Date

6-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

November 4, 2025
Pond Management Strategies Could Boost Native Salamander Conservation

Pond Management Strategies Could Boost Native Salamander Conservation

November 4, 2025

New Study Explores the Impact of Mucus Plugs in COPD Development

November 4, 2025

Angelica gigas Nakai Heals PCOS: Network Pharmacology Insights

November 4, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling How Sugars Influence the Inflammatory Disease Process

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.