• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

What makes some more afraid of change than others?

Bioengineer by Bioengineer
May 10, 2022
in Biology
Reading Time: 3 mins read
0
LSU Department of Biological Sciences Assistant Professor Christine Lattin at the microscope
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Humans are undoubtedly altering the natural environment. But how wild animals respond to these changes is complex and unclear. In a new study published today, scientists have discovered significant differences in how the brain works in two distinct personality types: those who act fearless and those who seem afraid of new things. Being fearless can help wildlife, specifically birds, find new food sources, explore new nesting areas and help them adapt to changes in their environment; but being afraid can also help protect them from dangerous novel things in their environment such as cars.

LSU Department of Biological Sciences Assistant Professor Christine Lattin at the microscope

Credit: LSU

Humans are undoubtedly altering the natural environment. But how wild animals respond to these changes is complex and unclear. In a new study published today, scientists have discovered significant differences in how the brain works in two distinct personality types: those who act fearless and those who seem afraid of new things. Being fearless can help wildlife, specifically birds, find new food sources, explore new nesting areas and help them adapt to changes in their environment; but being afraid can also help protect them from dangerous novel things in their environment such as cars.

“Our study provides interesting and important evidence that some of the behavior differences could be led by gene expression,” said LSU Department of Biological Sciences Assistant Professor Christine Lattin, who is the lead author on the paper published by PLOS ONE today.

Social creatures, such as house sparrows, can learn from each other, so having a mixture of both personality types in a flock could be part of the reason this species is so successful in human-altered environments. Scientists have found that within the flock, the genes expressed, or “turned on,” in the brains of the fearless birds are markedly different from those in the birds that exhibit fear. In fact, three out of the four regions of the brain studied showed differences. The hippocampus, which is associated with learning, memory and spatial navigation, contrasted the most amongst the two personality types.

“One of the interesting things about the hippocampus is it can play an important role in decision-making. For example, when wildlife are presented with something new in their environment, the genes in their brains respond, helping them process the information, compare it to past experience and decide whether they should approach or avoid the novel object,” Lattin said.

The scientists compared six wild, invasive female house sparrows: three of which acted fearless and three that seemed afraid to approach a new object at their feeding dish. The novel objects were a red wrist coil keychain wrapped around the food dish, a white plastic cover over part of the food dish, a green plastic Easter egg placed on top of the food in the middle of the dish, a normal silver food dish painted red on the outside and a blinking light hung above and directed towards the front of the dish. The fearless birds fed at the food dish regardless of the presence of the novel objects while the fearful birds avoided the food dish in the presence of the novel objects.

Several weeks after behavior testing, the scientists examined gene expression in four brain regions in these sparrows. The genes that were expressed in the hippocampus of the fearless birds were different from the genes expressed in the hippocampus of the fearful birds. For example, there were many more dopamine receptor 2 transcripts present in the fearless birds. Dopamine receptor 2 has been associated with boldness and exploration. In contrast, the birds that avoided the new objects had more transcripts for the estrogen receptor beta gene, which has been associated with anxiety.

“The fear of new things, or neophobia, is a problem some people struggle with. The neurobiological gene receptors we’ve identified could help other scientists develop drugs to target neophobia or anxiety even in our own species,” Lattin said.

Advances in sequencing technology have made it possible to study neurological gene expression in more wild species.

“It used to be very expensive, but technology has made it faster and cheaper to do these types of analyses. Now that it has become more accessible, more scientists are doing this type of research,” Lattin said.



Journal

PLoS ONE

DOI

10.1371/journal.pone.0267180

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Constitutive gene expression differs in three brain regions important for cognition in neophobic and non-neophobic house sparrows

Article Publication Date

10-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough Theory Unveils New Insights into Molecular Evolution

Breakthrough Theory Unveils New Insights into Molecular Evolution

November 14, 2025
Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

November 14, 2025

Sargassum’s Health Under Ocean Acidification and Nitrogen Boost

November 14, 2025

New Microfluidic ‘MISO’ Platform Achieves High-Resolution Cryo-EM Using Minimal Starting Material

November 14, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glycerol-3-Phosphate Drives Lipogenesis in Citrin Deficiency

Tetrafunctional Cyclobutanes Enhance Toughness Through Network Continuity

Reevaluating Uterine Closure Techniques in Cesarean Deliveries: A Call for Change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.