• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers use light for thermomagnetic recording on silicon waveguide

Bioengineer by Bioengineer
May 10, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON — Researchers have demonstrated, for the first time, light-induced thermomagnetic recording in a magnetic thin-film on silicon waveguides. The new writing technique is poised to enable miniature high-performance magneto-optical memories that don’t require bulky optics or mechanical rotation.

Experimental demonstration

Credit: Toshiya Murai, Tokyo Institute of Technology

WASHINGTON — Researchers have demonstrated, for the first time, light-induced thermomagnetic recording in a magnetic thin-film on silicon waveguides. The new writing technique is poised to enable miniature high-performance magneto-optical memories that don’t require bulky optics or mechanical rotation.

Magneto-optical storage devices combine magnetic and optical recording techniques to store information. Although several companies once made rewritable magneto-optical disk drives, these drives are rarely used today.

“Despite their significant advantages, magneto-optical drives have been replaced by cheaper flash drives or optical storage media such as DVDs,” said research team leader Toshiya Murai from the Tokyo Institute of Technology in Japan. “Because our new recording method can be implemented using silicon photonics, it could enable inexpensive magneto-optical devices that store large amounts of information on a small chip.”

The researchers describe their new magneto-topical memory devices and light-based writing technique in the Optica Publishing Group journal Optics Express. The devices are nonvolatile — meaning that data is saved even when no power is supplied to the device — and can withstand many cycles of writing and rewriting.

On-chip magneto-optical memories could enable all-optical alternatives to the electronic packet routers used in today’s telecommunications infrastructure. “This would eliminate the energy and expense required for optical-electrical-optical conversions and enable flexible communication for each data packet,” said Murai. “Magneto-optical memories could also offer bit-level storage for optical computers, which use light for processing, storing and transferring data.”

Controlling magnetism with light

Magneto-optical memory devices use heat to demagnetize a small spot on a magnetic film above a critical temperature known as the Curie point. A locally applied magnetic field then determines the direction in which the spot is magnetized when it cools. Performing this type of thermomagnetic recording in a photonic integrated circuit requires controlling the magnetic state of a magnetic film inside a waveguide using light propagating in the waveguide.

In the new work, the researchers developed a way to use light propagating in the waveguide to reverse the magnetization direction by heating the magnetic recording film to near the Curie temperature. Their approach allows the material’s magnetization to be easily aligned along the direction of the applied external magnetic field.

To demonstrate the new technique, the researchers fabricated a silicon waveguide that contained a thin-film magnet. Using a special high-resolution magneto-optical Kerr effect (MOKE) microscope, they were able to measure the film’s magnetic properties for different optical powers. This allowed them to experimentally show that the coercive force of the magnet on the silicon waveguide depends on the heat induced by light guided in the waveguide.

“When light was launched into the waveguide, we observed that the magnetization direction would flip under a proper biasing magnetic field,” said Murai. “Thus, we demonstrated light-induced thermomagnetic recording integrated on a silicon photonic platform.”

Next, the researchers would like to develop solid-state magneto-optical recording systems that can not only write, but also read, information on a silicon photonic platform using the new method. This will require reducing the energy consumption of light-induced thermomagnetic recording, which could be done using a magnetic recording medium with a smaller volume combined with a shorter light pulse.

Paper: T. Murai, Y. Shoji, T. Mizumoto, “Light-induced thermomagnetic recording of thin-film magnet CoFeB on silicon waveguide for on-chip magneto-optical memory,” Opt. Express, 30, 18054-18065 (2022)

DOI: https://doi.org/10.1364/OE.448460

About Optics Express

Optics Express reports on scientific and technology innovations in all aspects of optics and photonics. The bi-weekly journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society (OSA) and led by Editor-in-Chief James Leger of the University of Minnesota, USA. Optics Express is an open-access journal and is available at no cost to readers online at OSA Publishing.

About Optica Publishing Group (formerly OSA)

Optica Publishing Group is a division of Optica, the society advancing optics and photonics worldwide. It publishes the largest collection of peer-reviewed content in optics and photonics, including 18 prestigious journals, the society’s flagship member magazine, and papers from more than 835 conferences, including 6,500+ associated videos. With over 400,000 journal articles, conference papers and videos to search, discover and access, Optica Publishing Group represents the full range of research in the field from around the globe.



Journal

Optics Express

DOI

10.1364/OE.448460

Article Title

Light-induced thermomagnetic recording of thin-film magnet CoFeB on silicon waveguide for on-chip magneto-optical memory

Article Publication Date

10-May-2022

Share14Tweet9Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New 18F-labeled Compound Targets COX-2 Imaging

New Study Highlights Positive Impact of Diet and Exercise on Alcohol-Induced Liver Damage

CytoSorb® Enhanced Hemadsorption in Cardiac Surgery Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.