• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists with NASA’s MMS mission crack 60-year mystery of fast magnetic explosions

Bioengineer by Bioengineer
April 29, 2022
in Chemistry
Reading Time: 3 mins read
0
Magnetic reconnection
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In just minutes, a flare on the Sun can release enough energy to power the whole world for 20,000 years. An explosive process called magnetic reconnection triggers these solar flares and scientists have spent the last half-century trying to understand how the process happens.

Magnetic reconnection

Credit: NASA

In just minutes, a flare on the Sun can release enough energy to power the whole world for 20,000 years. An explosive process called magnetic reconnection triggers these solar flares and scientists have spent the last half-century trying to understand how the process happens.

It’s not just a scientific curiosity: A fuller understanding of magnetic reconnection could enable insights into nuclear fusion and provide better predictions of particle storms from the Sun that can affect Earth-orbiting technology.

Now, scientists with NASA’s Magnetospheric Multiscale Mission, or MMS, think they’ve figured it out. The scientists have developed a theory that explains how the most explosive type of magnetic reconnection – called fast reconnection – occurs and why it happens at a consistent speed. The new theory uses a common magnetic effect that’s used in household devices, such as sensors that time vehicle anti-lock braking systems and know when a cell phone flip cover is closed.

“We finally understand what makes this type of magnetic reconnection so fast,” said lead author on the new study Yi-Hsin Liu, a physics professor at Dartmouth College in New Hampshire and the deputy-lead of MMS’ theory and modeling team. “We now have a theory to explain it fully.”

Magnetic reconnection is a process that occurs in plasma, sometimes called the fourth state of matter. Plasma forms when a gas has been energized enough to break apart its atoms, leaving a motley of negatively charged electrons and positively charged ions existing side-by-side. This energetic, fluid-like material is exquisitely sensitive to magnetic fields.

From flares on the Sun, to near-Earth space, to black holes, plasmas throughout the universe undergo magnetic reconnection, which rapidly converts magnetic energy into heat and acceleration. While there are several types of magnetic reconnection, one particularly puzzling variant is known as fast reconnection, which occurs at a predictable rate.

“We have known for a while that fast reconnection happens at a certain rate that seems to be pretty constant,” said Barbara Giles, project scientist for MMS and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But what really drives that rate has been a mystery, until now.”

The new research, published in a paper in Nature’s Communications Physics journal and funded in part by the National Science Foundation, explains how fast reconnection occurs specifically in collisionless plasmas – a type of plasma whose particles are spread out enough that the individual particles don’t collide with one another. Where reconnection happens in space, most plasma is in this collisionless state, including the plasma in solar flares and the space around Earth.

The new theory shows how and why fast reconnection is likely sped up by the Hall effect, which describes the interaction between magnetic fields and electric currents. The Hall effect is a common magnetic phenomenon that’s used in everyday technology, like vehicle wheel speed sensors and 3D printers, where sensors measure speed, proximity, positioning, or electrical currents.

During fast magnetic reconnection, charged particles in a plasma – namely ions and electrons – stop moving as a group. As the ions and electrons begin moving separately, they give rise to the Hall effect, creating an unstable energy vacuum where reconnection happens. Pressure from the magnetic fields around the energy vacuum causes the vacuum to implode, which quickly releases immense amounts of energy at a predictable rate.

The new theory will be tested in the coming years with MMS, which uses four spacecraft flown around Earth in a pyramid formation to study magnetic reconnection in collisionless plasmas. In this unique space laboratory, MMS can study magnetic reconnection at a higher resolution than would be possible on Earth.

“Ultimately, if we can understand how magnetic reconnection operates, then we can better predict events that can impact us at Earth, like geomagnetic storms and solar flares,” Giles said. “And if we can understand how reconnection is initiated, it will also help energy research because researchers could better control magnetic fields in fusion devices.”



Journal

Communications Physics

DOI

10.1038/s42005-022-00854-x

Article Title

First-principles theory of the rate of magnetic reconnection in magnetospheric and solar plasmas.

Article Publication Date

28-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.