• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Testing how species respond to climate change

Bioengineer by Bioengineer
January 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Predicting how species will respond to climate change is a critical part of efforts to prevent widespread climate-driven extinction, or to predict its consequences for ecosystems.

Usually, the current climatic range of a species is used to predict where it will occur under future climate change scenarios.

However, this approach overlooks two important factors that may affect species' responses to climate change:

  • Species may be able to change the climatic range they can inhabit through evolution
  • Species within an ecological community may respond differently to climate change, meaning the competitors, predators, pathogens and parasites that a given species encounters under the new climatic conditions may also change.

In a new study, published today in Global Change Biology, scientists from the Universities of Bristol, James Cook University, and Melbourne University in Australia tested the response of the tropical rainforest fly Drosophila birchii to a changing climate by transplanting flies in hundreds of cages along mountain gradients in north-eastern Australia, and measuring their reproductive success at different elevations.

Mountains are useful for exploring the effects of climate change because they show predictable changes in temperature and humidity with elevation: In general, sites at low elevations are warmer and drier than higher elevation sites.

By testing the success of many D. birchii families transplanted along elevation gradients, the team were able to measure genetic variation in responses to the thermal environment, which indicates the potential for thermal tolerances to evolve. They found that all families showed similar responses, indicating low levels of genetic variation in temperature sensitivity, and therefore little potential for climatic tolerances to evolve.

The team also compared the response of flies in cages (which experienced the local temperature and humidity, but not interactions with other species) with the abundance of D. birchii in wild populations at the same sites along mountain gradients (where other species were also present), to test whether interactions among species affect responses to climate change.

The reproductive success of D. birchii in cages was lowest at cold, high elevation sites and increased at warmer sites towards the bottom of mountains. Of particular interest however, was that the change in abundance of D. birchii in wild populations along mountain gradients differed from that of D. birchii success in cages. D. birchii was most common at intermediate elevations, with abundance declining at colder sites towards the summit, but also at warmer sites towards the bottom of mountains, where flies in cages thrived.

This suggests that different factors restrict the distribution of D. birchii at either end of its range. Low temperatures prevent expansion of D. birchii at higher elevations, whereas it appears that other species, which were absent from the transplant cages, limit the spread of D. birchii into warmer sites in nature.

Understanding how interactions among species in ecological communities will change as a consequence of climate change is a critical part of predicting the consequences for ecosystem function, and will be a focus of the team's future work.

###

Media Contact

Richard Cottle
[email protected]
011-792-8896
@BristolUni

http://www.bristol.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Boosting Xanthan Gum Production with Essential Oil By-products

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025
Groundwater Pesticide Contamination: Challenges and Solutions

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

September 13, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.