• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Wearable sensor device helps visually impaired to sense their environment

Bioengineer by Bioengineer
January 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

VTT Technical Research Centre of Finland has developed a wearable assistive device for the visually impaired, which enables them to sense their environment and move around more safely. The device, which is worn like a heart rate monitor, has been clinically tested.

The device functions on the basis of a radar system developed by VTT.

"The novel aspect lies in wearable sensor device which functions based on radio waves, so that the signal passes through clothing. This means that it can be worn discreetly under a coat, for example," says Tero Kiuru, a Senior Scientist at VTT.

The radar conveys information to the user in the form of vibrations or voice feedback. It senses most obstacles in the user's surroundings, although difficulties remain in sensing objects such as thin branches and bushes.

The radar has already been clinically tested in device trials approved by the National Supervisory Authority for Welfare and Health (Valvira), in which VTT's partners were Kuopio University Hospital and the Finnish Federation of the Visually Impaired (FFVI). The test group included a total of 25 visually impaired people, of whom 14 were blind, 7 partially sighted and 4 were deaf-blind.

"A clear majority of the testers felt that the radar improved their ability to perceive their environment and increased their self-confidence when moving around," says Kiuru.

A total of 92% of the trial users felt that the device helped them to perceive their surroundings, 80% felt that their trust in their ability to move around independently had increased and 32% would immediately start using the test device in its current form.

On the other hand, they were not satisfied with distance control and vibration-based feedback.

The research will continue with selected test users and the device will be further developed.

A global market is believed to exist for the radar, since there are around 300 million visually impaired people in the world.

###

http://www.guidesense.com

Further information:

VTT
Tero Kiuru, Senior Scientist
Tel. +358 40 176 8566
[email protected]

Further information on VTT:

Olli Ernvall
Senior Vice President, Communications
358 20 722 6747
[email protected]
http://www.vtt.fi

VTT Technical Research Centre of Finland Ltd is the leading research and technology company in the Nordic countries. We use our research and knowledge to provide expert services for our domestic and international customers and partners, and for both private and public sectors. We use 4,000,000 hours of brainpower a year to develop new technological solutions. VTT in social media: Twitter @VTTFinland, Facebook, LinkedIn, YouTube, Instagram and Periscope.

Media Contact

Tero Kiuru
[email protected]
358-401-768-566
@VTTFinland

http://www.vtt.fi/?lang=en

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.