• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The deformation of the hydrogel is used to measure the negative pressure of water

Bioengineer by Bioengineer
April 22, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Water, unexpectedly, has the potential to withstand a massive stretching force or tension due to its internal cohesive force. Under extreme tension, the hydrostatic pressure of the water would display as absolute negative. The comprehension of such a unique thermodynamic non-equilibrium state in the phase diagram of water is still blurry, which has sparked a lot of curiosity in the field. Nevertheless, after botanists discovered it in the xylem of trees first, this so-called negative pressure of stretched water could be designed to generate extremely large pressure differences. It has been employed in a series of advanced heat and mass transfer applications, including the on-chip synthetic tree for continuous water extraction, nanoporous membranes with ultrahigh interfacial heat fluxes, and so on.

The deformation of the hydrogel is used to measure the negative pressure of water

Credit: Shihao Xu, Xiaowei Liu, Zehua Yu & Kang Liu

Water, unexpectedly, has the potential to withstand a massive stretching force or tension due to its internal cohesive force. Under extreme tension, the hydrostatic pressure of the water would display as absolute negative. The comprehension of such a unique thermodynamic non-equilibrium state in the phase diagram of water is still blurry, which has sparked a lot of curiosity in the field. Nevertheless, after botanists discovered it in the xylem of trees first, this so-called negative pressure of stretched water could be designed to generate extremely large pressure differences. It has been employed in a series of advanced heat and mass transfer applications, including the on-chip synthetic tree for continuous water extraction, nanoporous membranes with ultrahigh interfacial heat fluxes, and so on.

Researchers at Wuhan University in China, led by Prof. Kang Liu, devised a non-contact optical characterization approach to precisely detect the value of negative pressure of stretch water, particularly in microfluidic systems. This method prevents direct contact with stretched water and reduces the need for complicated measurement components. Their idea is to start with the deformation of the hydrogel surface caused by the extremely large negative pressure accumulating in the hydrogel voids. By establishing a link between negative pressure in the hydrogel voids and the deformation of the hydrogel surface, the exact value of negative pressure could be derived based on the extent of deformation and the measured geometrical parameters of the hydrogel voids. Moreover, the researchers also prove its further potential applications such as mapping the negative pressure of a dynamic flow in the microchannel. The work entitled “Non-contact optical characterization of negative pressure in hydrogel voids and microchannels” was published in Frontiers of Optoelectronics on Apr. 14, 2022.

###

About Higher Education Press

Founded in May 1954, Higher Education Press Limited Company (HEP), affiliated with the Ministry of Education, is one of the earliest institutions committed to educational publishing after the establishment of P. R. China in 1949. After striving for six decades, HEP has developed into a major comprehensive publisher, with products in various forms and at different levels. Both for import and export, HEP has been striving to fill in the gap of domestic and foreign markets and meet the demand of global customers by collaborating with more than 200 partners throughout the world and selling products and services in 32 languages globally. Now, HEP ranks among China’s top publishers in terms of copyright export volume and the world’s top 50 largest publishing enterprises in terms of comprehensive strength.

The Frontiers Journals series published by HEP includes 28 English academic journals, covering the largest academic fields in China at present. Among the series, 13 have been indexed by SCI, 6 by EI, 2 by MEDLINE, 1 by A&HCI. HEP’s academic monographs have won about 300 different kinds of publishing funds and awards both at home and abroad.

About Frontiers of Optoelectronics

Frontiers of Optoelectronics (FOE) aims at introducing the most recent research results and the cutting edge improvements in the area of photonics and optoelectronics. It is dedicated to be an important information platform for rapid communication and exchange between researchers in the related areas. The journal publishes review articles, research articles, letters, comments, special issues, and so on. The Editors-in-Chief are Academician Qihuang Gong from Peking University and Prof. Xinliang Zhang from Huazhong University of Science and Technology. FOE has been indexed by ESCI, Ei, SCOPUS, CSCD, Source Journals for Chinese Scientific and Technical Papers and Citations, etc. FOE is fully open access since 2022.



Journal

Frontiers of Optoelectronics

DOI

10.1007/s12200-022-00016-5

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Non-contact optical characterization of negative pressure in hydrogel voids and microchannels

Article Publication Date

14-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Chemically Tuning Quantum Spin–Electric Coupling in Magnets

Chemically Tuning Quantum Spin–Electric Coupling in Magnets

August 27, 2025

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Administration’s Directive Falls Short on Transparency

D-S-Net Boosts Precision in Lung Tumor Segmentation

Polycation Enzyme Framework Reverses Osteoporotic Bone Marrow

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.