• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Treating brain cancer with drug previously used on canines 

Bioengineer by Bioengineer
March 21, 2022
in Biology
Reading Time: 3 mins read
0
Rossmeisl
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The National Institutes of Health is awarding a $3.8 million grant to John Rossmeisl, the Dr. and Mrs. Dorsey Taylor Mahin Professor of Neurology and Neurosurgery at the Virginia-Maryland College of Veterinary Medicine, and Waldemar Debinski, cancer biology professor at the Wake Forest School of Medicine. The team will treat human brain cancer with a drug they have previously used to treat canines.  

Rossmeisl

Credit: Virginia Tech

The National Institutes of Health is awarding a $3.8 million grant to John Rossmeisl, the Dr. and Mrs. Dorsey Taylor Mahin Professor of Neurology and Neurosurgery at the Virginia-Maryland College of Veterinary Medicine, and Waldemar Debinski, cancer biology professor at the Wake Forest School of Medicine. The team will treat human brain cancer with a drug they have previously used to treat canines.  

Over the course of five years, the grant will allow Rossmeisl and Debinski to hone a new method to treat glioblastoma, an aggressive and deadly form of brain cancer. The first two years will continue their research on treating canine glioma, and the last three years will treat patients in a clinical trial at Wake Forest Baptist Comprehensive Cancer Center. 

The research will characterize in-depth the antitumor activity, safety, and pharmacokinetics of the drug Rossmeisl and Debinski have used in their canine cancer research.  

Rossmeisl is the interim director of the Animal Cancer Care and Research Center, a state-of-the-art clinical and research facility in Roanoke and one of the college’s three hospitals. Additionally, he serves as the associate department head of the Department of Small Animal Clinical Sciences and heads the Veterinary and Comparative Neuro-oncology Laboratory. He has collaborated with Debinski, director of the Brain Tumor Center of Excellence at Wake Forest School of Medicine’s Comprehensive Cancer Center, since the early 2000s.

An earlier version of the drug previously went through human clinical trials, but it unfortunately failed. It cannot be given orally or injected, which presents a challenge.  

“One of the major reasons why that clinical drug trial failed was not because the drug isn’t effective against the tumor — it just wasn’t delivered effectively to the target,” explained Rossmeisl.  

The team has refined a technique called convection-enhanced delivery (CED) to place catheters into the tumor tissue to administer the drug directly. The approach significantly improved the ability of the CED technique to efficiently and effectively deliver drugs to glioblastoma compared to previous trials, which has been fundamental to evaluating the safety and preliminary efficacy of the drug in dogs.  

The version of the drug used in the previous human trials targeted one receptor in the tumor. The version in the upcoming trials targets four. The drug not only kills the cancer cells, but when the cells die, the immune system initiates an immune response, killing the tumor more effectively. Part of the grant will be used to better characterize what that immune response is in addition to further refining the delivery method through mapping and modeling. 

The team recently finished a canine clinical trial that examined the toxicity of the drug. The team gave six times higher a dose than that which has been given to humans with no toxicity, and results of early trials showed that half of the dogs experienced tumor shrinkage, a remarkable achievement.

This research aligns the college’s One Health approach to veterinary medicine, which recognizes the dynamic interdependence of human, animal, and environmental health and promotes interdisciplinary collaboration.  

“Personally, this is the ultimate embodiment of what I want to do. I put something in dogs that not only helps dogs, but it might help someone’s father, mother, sister, brother, daughter, or son. If you statistically look at cancer clinical trials, the odds are stacked against us. But to me, that’s far less important than the fact that at least we’re going to try,” said Rossmeisl. 



Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.