• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bacteria-shredding insect wings inspire new antibacterial packaging

Bioengineer by Bioengineer
March 21, 2022
in Biology
Reading Time: 3 mins read
0
Dragonfly nanopillars
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Key points:

Dragonfly nanopillars

Credit: RMIT University

Key points:

  • Antibacterial texturing kills bacteria, extending food’s shelf life.
  • Comes amid huge demand to improve the lifespan of food products, particularly for export.
  • Texture can be scaled up for mass production.

The lab-made nanotexture from an Australian-Japanese team of scientists kills up to 70% of bacteria and retains its effectiveness when transferred to plastic.

More than 30% of food produced for human consumption becomes waste, with entire shipments rejected if bacterial growth is detected.

The research sets the scene for significantly reducing waste, particularly in meat and dairy exports, as well as extending the shelf life and improving the quality, safety and integrity of packaged food on an industrial scale.

Distinguished Professor Elena Ivanova of RMIT University in Melbourne, Australia, said the research team had successfully applied a natural phenomenon to a synthetic material – plastic.

“Eliminating bacterial contamination is a huge step in extending the shelf life of food,” she said.

“We knew the wings of cicadas and dragonflies were highly-efficient bacteria killers and could help inspire a solution, but replicating nature is always a challenge.

“We have now created a nanotexturing that mimics the bacteria-destroying effect of insect wings and retains its antibacterial power when printed on plastic.

“This is a big step towards a natural, non-chemical, antibacterial packaging solution for the food and manufacturing industry.”

The research, published in ACS Applied Nano Materials, is a collaboration between RMIT, Tokyo Metropolitan University and Mitsubishi Chemical’s The KAITEKI Institute.

In 2015, Australia exported $US3.1 billion of food and agricultural exports to Japan, making it the 5th largest exporter of such products to the country.

How it works

Dragonfly and cicada wings are covered by a vast array of nanopillars – blunted spikes of similar size to bacteria cells.

When bacteria settle on a wing, the pattern of nanopillars pulls the cells apart, rupturing their membranes and killing them.

“It’s like stretching a latex glove,” Ivanova said. “As it slowly stretches, the weakest point in the latex will become thinner and eventually tear.”

Ivanova’s team developed their nanotexture by replicating insects’ nanopillars and developing nanopatterns of their own.

To assess the pattern’s antibacterial ability, bacteria cells were monitored at RMIT’s world-class Microscopy and Microanalysis Facility.

The best antibacterial patterns were shared with the Japan team, who developed a way to reproduce the patterns on plastic polymer.

Back in Australia, Ivanova’s team tested the plastic nanopatterns and found the one which best replicated insect wings but is also easiest to fabricate and scale up.

Ivanova said dealing with plastic was more difficult than other materials like silicon and metals, because of its flexibility.

“The nanotexturing created in this study holds its own when used in rigid plastic. Our next challenge is adapting it for use on softer plastics,” she said.

Since Ivanova and her colleagues discovered the bacteria killing nature of insect wings a decade ago, they’ve been working to design the optimal nanopattern to harness insects’ bacteria-killing powers and use it on a range of materials.

Until recently, it was difficult to find suitable technology to reproduce this nanotexturing on a scale suitable for manufacturing.

But now technology exists to scale up and apply antibacterial properties to packaging, among a range of other potential applications, like personal protective equipment.

Their new research builds on a 2020 study into using insect-inspired nanomaterials to fight superbugs.

The team is keen to collaborate with potential partners in the next stage of the research – upscaling the technology and determining the best ways to mass manufacture the antibacterial packaging.

A pioneer in biomimetic antibacterial surfaces, Distinguished Professor Elena Ivanova leads the Mechano-bactericidal Materials Research Group in the School of Science at RMIT.

The research was supported by the Foundation for Australia-Japan Studies under the Rio Tinto Australia-Japan Collaboration Project.

‘Nanopillar Polymer Films as Antibacterial Packaging Materials’, with co-authors Denver Linklater, Soichiro Saita, Takaaki Murata, Chaitali Dekiwadia, Russell Crawford, Hideki Masuda, Haruhiko Kusaka and Elena Ivanova, is published in ACS Applied Nano Materials (DOI: acsanm.1c04251).



Journal

ACS Applied Nano Materials

DOI

10.1021/acsanm.1c04251

Method of Research

Observational study

Subject of Research

Cells

Article Title

Nanopillar Polymer Films as Antibacterial Packaging Materials

Article Publication Date

4-Feb-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Hope for Sahara Killifish’s Rediscovery in Algeria!

Hope for Sahara Killifish’s Rediscovery in Algeria!

September 12, 2025
Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

September 12, 2025

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

September 12, 2025

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Overcoming Challenges in Treating Severe Eating Disorders

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

Terabase-Scale Long-Reads Reveal Soil Bioactive Molecules

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.