• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How do blind cavefish survive their low-oxygen environment?

Bioengineer by Bioengineer
March 11, 2022
in Biology
Reading Time: 4 mins read
0
Cavefish
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cavefish have obvious adaptations such as missing eyes and pale colors that demonstrate how they evolved over millennia in a dark, subterranean world.

Cavefish

Credit: ANDREW HIGLEY/UC CREATIVE

Cavefish have obvious adaptations such as missing eyes and pale colors that demonstrate how they evolved over millennia in a dark, subterranean world.

Now researchers at the University of Cincinnati say these incredible fish have an equally remarkable physiology that helps them cope with a low-oxygen environment that would kill other species.

Biologists in UC’s College of Arts and Sciences found that Mexican cavefish produce more hemoglobin through red blood cells that are much larger compared to those of surface-dwelling fish. Hemoglobin helps the body transport oxygen and carbon dioxide between a fish’s cells and organs and its gills.

The study was published in the Nature journal Scientific Reports. It demonstrates how much more there is to learn about animals that have intrigued biologists for 200 years.

“I’ve been fascinated by these fish for a long time,” UC associate professor Joshua Gross said.

Cavefish evolved in caverns around the world. The species UC biologists examined, Astyanax mexicanus, diverged as recently as 20,000 years ago from surface fish still found in nearby streams in Sierra de El Abra, Mexico.

Cavefish are pale pink and nearly translucent compared to their silvery counterparts on the surface. While cavefish have the faintest outline of vestigial eye sockets, the surface tetras have enormous round eyes that give them a perpetually surprised expression.

Despite their many obvious physical differences, the two fish are considered by many to be members of the same species, Gross said.

“Unlike Charles Darwin’s finches in the Galapagos that are separated at the species level, both the cavefish and surface fish are considered members of the same species and can interbreed,” he said.

That makes them a good model system for biologists to study evolutionary and genetic adaptations, Gross said.

Gross and his students have learned a lot about these puzzling fish over the years. They found that the fish’s skull is asymmetrical, which could be an adaptation for navigating in a world with no visual cues. And they identified the gene responsible for the fish’s ghostly pallid color. It’s the same gene responsible for red hair color in people.

Scientists elsewhere have reported that cavefish sleep less than surface fish.

For the latest study, Gross and UC biology students Jessica Friedman and Tyler Boggs, the study’s lead author, examined hemoglobin in cavefish blood to see if it might explain how they survive the low-oxygen environment of deep underground caves. The UC study examined cavefish from three populations in Mexican caves called Chica, Tinaja and Pachón.

While fast-moving surface streams are saturated with oxygen, cavefish live in deep caverns where standing water lies undisturbed for long periods. Studies have found that some of these standing pools have far less dissolved oxygen than surface waters.

“They move around all the time, but they have little access to nutrition,” Boggs said. “It’s a paradox. They’re expending all this energy. Where does it come from?”

Blood samples revealed that cavefish have more hemoglobin than surface fish. UC researchers assumed that cavefish must have a higher hematocrit — a clinical measure of the relative contribution of red blood cells in whole blood.

These researchers expected to find more red blood cells in cavefish, “But they were virtually the same,” Gross said. “We couldn’t figure out what was going on.”

UC biologists examined the red blood cells of both fish and found that those of cavefish are much larger by comparison.

“That size difference largely explains the differences in hematocrit,” Gross said. “We know very little about the mechanism of cell size in evolution, so this finding is something we could capitalize on to gain insight into how animals evolve elevated hemoglobin capacity.”

Gross said the elevated hemoglobin might allow cavefish to forage longer in the low-oxygen environment. Cavefish often have to work harder to find limited food available in the caves.

Boggs said scientists are very interested in how fish draw oxygen from the water. Because of climate change and human development, marine systems are seeing more ecological disasters such as red tides, algae blooms that create low-oxygen environments that often lead to massive fish kills.

“There is a lot of ecological relevance here,” he said. “It’s happening in freshwater environments, saltwater environments. Researchers are trying to call attention to this awful issue.”



Journal

Scientific Reports

DOI

10.1038/s41598-022-07619-0

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Alterations to cavefish red blood cells provide evidence of adaptation to reduced subterranean oxygen

Article Publication Date

8-Mar-2022

COI Statement

No competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover New Switch That Triggers Programmed Cell Death

November 3, 2025
blank

Agricultural Practices: A Key Factor in the Preservation or Degradation of Protected Areas

November 3, 2025

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers Faced by Community Midwives in Rural Pakistan

Perioperative Tumor Cell Changes Impact Colorectal Surgery

AI Advances Male Pattern Hair Loss Stratification

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.