• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists discover mechanism behind how certain osmolytes cause kidney damage

Bioengineer by Bioengineer
February 26, 2022
in Biology
Reading Time: 3 mins read
0
The pathway to EMT in mannitol treatment
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have uncovered the mechanism by which osmolytes used to treat high fluid pressure in the eye and skull can cause kidney damage. Using rat kidney cells treated with mannitol, they showed that certain kidney cells underwent a change in their skeletal structure, inducing a transformation that can lead to renal failure. They also found ways to arrest this change, suggesting new ways to avoid serious side effects.

The pathway to EMT in mannitol treatment

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have uncovered the mechanism by which osmolytes used to treat high fluid pressure in the eye and skull can cause kidney damage. Using rat kidney cells treated with mannitol, they showed that certain kidney cells underwent a change in their skeletal structure, inducing a transformation that can lead to renal failure. They also found ways to arrest this change, suggesting new ways to avoid serious side effects.

High pressure in the eye or the cranial fluid is a symptom of serious health problems and can cause tremendous damage. In the eye, ocular hypertension can lead to glaucoma and eventually permanent vision loss. Drugs used to treat this are often diuretics and come under a class of chemicals known as osmolytes. By dispersing into the blood, they come into contact with compartments of our body with too high a pressure, drawing out fluid and reducing the pressure. This includes mannitol, a common chemical given intravenously to tackle excess pressures in both the eye and brain. However, it is known that this lifesaving treatment has some side effects, including potential acute kidney failure. Why this occurs has continued to baffle researchers.

Now, a team led by Associate Professor Naoya Sakamoto of Tokyo Metropolitan University have uncovered a key part of the mechanism by which this can occur. Using rat kidney cells, they applied a mannitol treatment and studied how it affected epithelial (skin or surface) cells in the proximal tubes, the part of the kidney said to be the most vulnerable to osmolyte treatment. Firstly, they confirmed that a transformation known as an epithelial-mesenchymal transition (EMT) occurred, effectively transforming the cells back to a primordial state where they no longer function as skin cells. For example, they stop expressing E-cadherin, a key protein that helps bind cells together. EMT is strongly associated with renal injury. Curiously, however, the same change was not seen for another osmolyte, urea. The team discovered that mannitol, which could not traverse the membrane of these cells, caused the cells themselves to shrink due to osmotic pressure, and that it was this shrinkage that caused problems.

Looking further at the structure of the cell, they found that the skeletal structure of the cells, the cytoskeleton, was significantly impacted. The cytoskeleton is a meshwork of filaments made of actin protein, and contain important assemblies known as focal adhesions which help transmit mechanical stresses and stimuli from outside the cell to the inside. These focal adhesions were found to be rearranged in the presence of mannitol, accompanied by a significant uptick in the incorporation of a particular type of actin called alpha-SMA into the filaments. The team went on to introduce an inhibitor which prevented the rearrangement of focal adhesions. It turns out that this step successfully prevents these changes in the cytoskeleton, and also prevents EMT from occurring with mannitol in the environment.

The team’s findings show that the rearrangement of focal adhesions plays a key role in EMT in proximal tubular cells and suggest a strategy to prevent it. Translated into treatments, this may lead to enhancement in the therapeutic value of common osmolytes as a lifesaving treatment.

This work was supported by Grants-in-Aid for Scientific Research by MEXT, Japan (KAKENHI Grant Numbers 17H0277, 18H03521, and 18K19934).



Journal

PLoS ONE

DOI

10.1371/journal.pone.0261345

Article Title

Hyperosmotic stress induces epithelial-mesenchymal transition through rearrangements of focal adhesions in tubular epithelial cells

Article Publication Date

21-Dec-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.