• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How the brain filters out sounds

Bioengineer by Bioengineer
February 15, 2022
in Biology
Reading Time: 3 mins read
0
Seba’s short-tailed bat (Carollia perspicillata)
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FRANKFURT. Bats are renowned for their echolocation skills, navigation using sound therefore: they ‘see’ with their extremely sensitive hearing, by emitting ultrasonic calls and forming a picture of their immediate environment on the basis of the reflected sound. Thus, for instance, Seba’s short-tailed bat (Carollia perspicillata) finds the fruit it prefers to eat using this echolocation system. At the same time bats use their voice to communicate with other bats, whereby they then utilise a somewhat lower frequency range. Seba’s short-tailed bat has a vocal range which is otherwise only found among songbirds and humans. Just like humans it creates sound via its larynx.

Seba’s short-tailed bat (Carollia perspicillata)

Credit: Julio Hechavarria / Goethe University Frankfurt, Germany

FRANKFURT. Bats are renowned for their echolocation skills, navigation using sound therefore: they ‘see’ with their extremely sensitive hearing, by emitting ultrasonic calls and forming a picture of their immediate environment on the basis of the reflected sound. Thus, for instance, Seba’s short-tailed bat (Carollia perspicillata) finds the fruit it prefers to eat using this echolocation system. At the same time bats use their voice to communicate with other bats, whereby they then utilise a somewhat lower frequency range. Seba’s short-tailed bat has a vocal range which is otherwise only found among songbirds and humans. Just like humans it creates sound via its larynx.

In order to find out how Seba’s short-tailed bat filters out particularly important signals from the wide diversity of different sounds – warning cries from other bats, the isolation calls of infant bats, as well as the reflections from pepper plants in the labyrinth of leaves and branches, for example – researchers at Goethe University Frankfurt recorded the brain waves of the bats.

To this end the researchers headed by Professor Manfred Kössl from the Institute of Cell Biology and Neuroscience inserted electrodes – as fine as acupuncture needles – under the scalp of the bats while the bats drowsed under anaesthetic. Ultimately this measuring method is so sensitive that even the slightest movement of a bat’s head would interfere with the results of the measurements. Despite being anaesthetised, the bat’s brain still reacts to sound.

Successions of two notes with differing pitches, corresponding to either echolocation calls or communication calls, were then played back to the bats. Initially a sequence was played back in which note 1 occurs much more frequently than note 2, for example “1-1-1-1-2-1-1-1-2-1-1-1-1-1-1…”. This was reversed in the next sequence, with note 1 occurring rarely and note 2 frequently. In this manner the scientists wanted to establish whether the neuronal processing of a given sound depended on the probability of it occurring and not, for instance, on its pitch.

Ph.D. student Johannes Wetekam, lead author of the study, explains: “Indeed our research results show that a rare and thus unexpected sound leads to a stronger neuronal response than a frequent sound.” In this respect the bat’s brain regulates the strength of the neuronal response to frequent echolocation calls by downplaying these, and amplifies the response to infrequent communication calls. Wetekam: “This shows that the bats process unexpected sounds differently in dependence on their frequency in order to gather adequate sensory impressions.”

The interesting aspect here, says Wetekam, is that the processing of the signals seemingly already occurs in the brain stem, which it has been assumed to date merely receives acoustic signals and transmits them to higher regions of the brain, where the signals are then offset against one another. The reason: “This probably saves the brain as a whole a lot of energy and allows for a very fast reaction,” says Wetekam.

Professor Manfred Kössl believes: “We are all familiar with the party effect: we filter out the conversations of people in our immediate environment so we can concentrate totally on the person we are speaking with. These mechanisms are similar to those found in bats. If we can better understand how bats hear sound, in the future this could help us to understand what occurs with disorders such as ADHD (attention deficit hyperactivity disorder), which disrupt adequate processing of extraneous stimuli.”



Journal

European Journal of Neuroscience

DOI

10.1111/ejn.15527

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Correlates of deviance detection in auditory brainstem responses of bats

Article Publication Date

11-Nov-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Four Exome Capture Platforms on DNBSEQ

Comparing Four Exome Capture Platforms on DNBSEQ

October 25, 2025
EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Long-acting Injectable Buprenorphine Lowers Inpatient Care Needs

AI Models for Urothelial Neoplasm Classification Validated

Rotavirus RNA in Wastewater Reflects US Infection, Vaccination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.