• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists build ‘valves’ in DNA to shape biological information flows

Bioengineer by Bioengineer
January 21, 2022
in Biology
Reading Time: 3 mins read
0
DNA Image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of Bristol have developed new biological parts that are able to shape the flow of cellular processes along DNA.

DNA Image

Credit: Thomas Gorochowski

Scientists at the University of Bristol have developed new biological parts that are able to shape the flow of cellular processes along DNA.

The work, now published in the journal Nature Communications, offers a fresh perspective on how information is encoded in DNA and new tools for building sustainable biotechnologies.

Despite being invisible to the naked eye, microorganisms are integral for our survival. They operate using DNA, often referred to as the code of life. DNA encodes numerous tools that could be useful to us, but we currently lack a complete understanding of how to interpret DNA sequences.

Matthew Tarnowski, first author and a PhD student in Bristol’s School of Biological Sciences, said: “Understanding the microbial world is tricky. While reading a microbe’s DNA with a sequencer gives us a window into the underlying code, you still need to read a lot of different DNA sequences to understand how it actually works. It’s a bit like trying to learn a new language, but from only a few small fragments of text.”

To tackle this problem, the Bristol team focused on how the information encoded in DNA is read, and specifically, how the flow of cellular processes along DNA are controlled. These biological information flows orchestrate many of the core functions of a cell and an ability to shape them would offer a way to guide cellular behaviours.

Taking inspiration from nature, where it is known that flows on DNA are often complex and interwoven, the team focused on how these flows could be regulated by creating “valves” to tune the flow from one region of DNA to another.

Dr Thomas Gorochowski, senior author and Royal Society University Research Fellow at the University of Bristol, said: “Similar to a valve that controls the rate that a liquid flows through a pipe, these valves shape the flow of molecular processes along DNA. These flows allow cells to make sense of the information stored in their genomes and the ability to control them enables us to reprogram their behaviours in useful ways.”

Designing new biological parts can typically take a huge amount of time. To get around this problem, the team employed methods to enable the rapid assembly of many DNA parts in parallel and a sequencing technology based on ‘nanopores’ that allowed them to simultaneously measure how each part worked.

Dr Gorochowski added: “Harnessing the unique features of nanopore sequencing was the step needed to unlock our ability to effectively design the biological valves. Rather than separately building and testing a couple at a time, we could instead assemble and test thousands in a mixed pool, helping us pull apart their design rules and better understand how they work.”

The authors go on to further show how valves can be used for regulating other biological components in the cell, opening avenues to the future simultaneous control of many genes and complex editing of genomes.

Looking forward, the team are currently considering how this technology could be used responsibly. Dr Mario Pansera, distinguished researcher of the Post-Growth Innovation Lab at the University of Vigo, Spain, said: “Now that they have crafted these tools, a big question is how they can be used responsibly and equitably in the real world. Post-growth entrepreneurship offers useful approaches for imagining more deliberative and inclusive ways to put such technology at the service of people.”

This work was funded by the Royal Society, BBSRC/EPSRC Bristol Centre for Synthetic Biology (BrisSynBio) and EPSRC/BBSRC Synthetic Biology Centre for Doctoral Training (SynBioCDT) with support from the Bristol BioDesign Institute (BBI).

Paper:

‘Massively parallel characterization of transcript isoforms using direct RNA sequencing’ by M. Tarnowski and T.E. Gorochowski in Nature Communications [doi.org/10.1038/s41467-022-28074-5]

Issued by the University of Bristol Media and PR Team on Thursday 20 January 2022. For more information please email [email protected].



Journal

Nature Communications

Method of Research

Randomized controlled/clinical trial

Subject of Research

Cells

Article Title

Massively parallel characterization of transcript isoforms using direct RNA sequencing

Article Publication Date

21-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.