• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Seeing inside cells with an integrated nanowire probe

Bioengineer by Bioengineer
January 18, 2022
in Biology
Reading Time: 3 mins read
0
Integrated fiber probe for label-free detection inside living cells.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The biological intracellular microenvironment is complex, made up of various cell compartments and intracellular substances. To fully characterize the physiological function of living cells, one of the key factors is the development of micro/nanoprobes for subcellular measurement. Current nanoprobe techniques commonly rely on dyes and quantum dot-doped photoelectric materials as sensors or calibration objects, combined with far-field superresolution optical technology. But these techniques lack an effective circuit to track internal and external interactions between photoelectric signals and molecules. The accuracy of results in long-term measurement also suffers from background fluorescence interference and bleaching.

Integrated fiber probe for label-free detection inside living cells.

Credit: Li et al., doi 10.1117/1.AP.4.1.016001

The biological intracellular microenvironment is complex, made up of various cell compartments and intracellular substances. To fully characterize the physiological function of living cells, one of the key factors is the development of micro/nanoprobes for subcellular measurement. Current nanoprobe techniques commonly rely on dyes and quantum dot-doped photoelectric materials as sensors or calibration objects, combined with far-field superresolution optical technology. But these techniques lack an effective circuit to track internal and external interactions between photoelectric signals and molecules. The accuracy of results in long-term measurement also suffers from background fluorescence interference and bleaching.

As a platform for intracellular detection and regulation, a micro/nano-sized fiber is naturally suited to the nanoscale and submilliscale of conventional cells, enabling lossless transmission of far-near-field optical signals. To maintain the viability of the cells in vitro, the incision required for probe insertion is generally required to be within 1 μm. Given this limit, the sensing functional area of the ideal micro/nanofiber probe needs to be confined. It is difficult to realize a sensor tip on the order of micrometers or even nanometers within the structure of the silica optical fiber with its low refractive index (RI). Introducing and integrating external materials and structures provides a solution that can reduce the size of fiber devices while achieving a fiber probe with a complete spectrum function module for long-term nonfluorescent detection.

As reported in Advanced Photonics, researchers from Nanjing University recently developed a multifunctional, biocompatible, portable, and reusable microfiber probe based on a zinc oxide (ZnO) nanograting-integrated microfiber. It serves as an RI sensor for live, label-free sensing of intracellular RI distribution and real-time monitoring of cellular molecules.

The device consists of a ZnO nanowire with gratings etched on the front end and a fiber taper probe. The sensing area of the device is about 800 nm × 6 μm, which is much smaller than that of traditional fiber gratings. This novel nano-optical functional module integrates signal transmission, sensing, and collection, greatly improving the operability and sensitivity. The use of nanowire gratings instead of fluorescent particles for long-term single-cell detection offers a more stable and reliable performance.

To demonstrate the nanowire probe function, the researchers inserted it into single living HeLa cells, human cancer cells named after Henrietta Lacks, a cancer patient from whom the cell line was derived. The device’s sensitivity to RI enabled the team to observe changes in cell morphology and intracellular microenvironment during a stage of cell development and maturation known as apoptosis. Quantitative detection and analysis of the refractive indices naturally occurring in single living cells during apoptosis can help to advance understanding of cell life events and disease.

This research set a precedent for real-time, in situ sensing and tracking of early cellular apoptosis by using a label-free nano-optical device in living HeLa cells. It will not only contribute to scientific knowledge of cell life events, but also broaden the application scope of fiber nanosensors. At the same time, the strategy of inserting functional nanomodules into single cells overcomes barriers to obtaining information about the interactions between internal and external cell media, lighting a path for new ways to combine the advantages of fiber optics and cell biology. In the future, real-time monitoring of temperature and substance concentration in cells may be realized through the design of different structures, and the evolution of cell physiological processes may be further explored.

Read the open access article by Danran Li et al., “Label-free fiber nanograting sensor for real-time in situ early monitoring of cellular apoptosis,” Adv. Photonics 4(1), 016001 (2022), doi 10.1117/1.AP.4.1.016001.



Journal

Advanced Photonics

DOI

10.1117/1.AP.4.1.016001

Article Title

Label-free fiber nanograting sensor for real-time in situ early monitoring of cellular apoptosis

Article Publication Date

6-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Island reptiles risk extinction before scientific study, warns global review

November 6, 2025
Revamping Genome-Wide Metabolic Model for Streptococcus suis

Revamping Genome-Wide Metabolic Model for Streptococcus suis

November 6, 2025

Commonly Used Pesticides Linked to Reduced Sperm Count

November 5, 2025

Gender, Surgery Side Influence Epilepsy Surgery Outcomes

November 5, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Phylogenetic Confidence During Pandemics

Natural Extracts vs. Chlorhexidine on Streptococcus mutans

Nurses and Carers’ Perspectives on CSNAT Intervention

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.