• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

WVU receives NIH funding to dissect the mechanism of retinal degeneration

Bioengineer by Bioengineer
January 6, 2022
in Biology
Reading Time: 2 mins read
0
Glasses WVU
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Inherited retinal degeneration can make even the most mundane tasks—like cooking, driving and walking down the sidewalk—difficult or impossible, and it can’t be cured.

Glasses WVU

Credit: WVU Illustration

Inherited retinal degeneration can make even the most mundane tasks—like cooking, driving and walking down the sidewalk—difficult or impossible, and it can’t be cured.

Peter Stoilov and Visvanathan Ramamurthy—researchers at the West Virginia University School of Medicine—have spent the last several years collaborating to study proteins called Musashi, the loss of which causes rapid retinal degeneration. Their project recently received its fifth year of funding—$502,444—from the National Eye Institute, a division of the National Institutes of Health.

“The big problem with treating retinal disease is that it’s such a scattered target that you cannot hit it with just one therapy,” said Stoilov, an associate professor in the Department of Biochemistry. “Retinal disease is caused by hundreds of genetic mutations in tens of different genetic loci, and so you need to treat each mutation individually. We think once we have a good understanding of what Musashi proteins do and how to manipulate their function, we can develop a universal therapy for blinding diseases.”

The Musashi proteins are two very similar RNA-binding proteins found in all vertebrates. Earlier work by Stoilov and Ramamurthy revealed that Musashi proteins are critical for photoreceptor development and survival. Now they’re exploring what exactly Musashi proteins do on a molecular level that’s so important to photoreceptor health.

The researchers want to determine if the Musashi are controlling protein translation in the retina directly and investigate the role the proteins play in regulating gene suppression.

“I think the hardest task in this grant is to assign a weight to all these different potential mechanisms,” Stoilov said. “How important is direct regulation versus indirect regulation? And these hypotheses may not be mutually exclusive.”

Treatment options for people with retinal degenerative diseases are limited—and expensive—because they only work when certain mutations are present.

“A reduction in the production of proteins needed for vision is frequently associated with human blindness,” said Ramamurthy, a professor with the Department of Ophthalmology and Visual Sciences and chair of the Department of Biochemistry. “Our studies on Musashi will identify potential pathways to boost protein production and slow vision loss.” 

Stoilov and Ramamurthy trust that a greater understanding of the processes leading to retinal degeneration and blindness will bring about more universally-effective and cheaper therapies for those who have retinal degenerative diseases.

“I think the results of this project will give us a global, very good fundamental understanding of what happens during retinal degeneration,” Stoilov said. “That is universal, and it can be applied broadly to retinal degeneration regardless of what the immediate cause is.”



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025
DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Herbal Remedies for Hypertension: Insights from Trinidad

Revolutionary Graph Network Enhances Protein Interaction Prediction

Impact of Triglyceride-Glucose Index on Neonatal Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.