• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Dog brains can distinguish between languages

Bioengineer by Bioengineer
January 6, 2022
in Biology
Reading Time: 4 mins read
0
Dog in a brain scanner
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Dog brains can detect speech, and show different activity patterns to a familiar and an unfamiliar language, a new brain imaging study by researchers from the Department of Ethology, Eötvös Loránd University (Hungary) finds. This is the first demonstration that a non-human brain can differentiate two languages. This work has been published in NeuroImage.

Dog in a brain scanner

Credit: Photo: Eniko Kubinyi

Dog brains can detect speech, and show different activity patterns to a familiar and an unfamiliar language, a new brain imaging study by researchers from the Department of Ethology, Eötvös Loránd University (Hungary) finds. This is the first demonstration that a non-human brain can differentiate two languages. This work has been published in NeuroImage.

“Some years ago I moved from Mexico to Hungary to join the Neuroethology of Communication Lab at the Department of Ethology, Eötvös Loránd University for my postdoctoral research. My dog, Kun-kun, came with me. Before, I had only talked to him in Spanish. So I was wondering whether Kun-kun noticed that people in Budapest spoke a different language, Hungarian.” — says Laura V. Cuaya, first author of the study. “We know that people, even preverbal human infants, notice the difference. But maybe dogs do not bother. After all,

we never draw our dogs’ attention to how a specific language sounds. We designed a brain imaging study to find this out.

Kun-kun and 17 other dogs were trained to lay motionless in a brain scanner, where we played them speech excerpts of The Little Prince in Spanish and Hungarian. All dogs had heard only one of the two languages from their owners, so this way we could compare a highly familiar language to a completely unfamiliar one. We also played dogs scrambled versions of these excerpts, which sound completely unnatural, to test whether they detect the difference between speech and non-speech at all.” 

Videoabstract of the research: https://youtu.be/wgv6ywyFJEg

When comparing brain responses to speech and non-speech, researchers found distinct activity patterns in dogs’ primary auditory cortex. This distinction was there independently from whether the stimuli originated from the familiar or the unfamiliar language. There was, however, no evidence that dog brains would have a neural preference for speech over non-speech.

“Dog brains, like human brains, can distinguish between speech and non-speech.

But the mechanism underlying this speech detection ability may be different from speech sensitivity in humans: whereas human brains are specially tuned to speech, dog brains may simply detect the naturalness of the sound” — explains Raúl Hernández–Pérez, coauthor of the study.

In addition to speech detection, dog brains could also distinguish between Spanish and Hungarian.

These language-specific activity patterns were found in another brain region, the secondary auditory cortex. Interestingly, the older the dog was, the better their brain distinguished between the familiar and the unfamiliar language. “Each language is characterized by a variety of auditory regularities. Our findings suggest that during their lives with humans, dogs pick up on the auditory regularities of the language they are exposed to” — says Hernández–Pérez. 

“This study showed for the first time that a non-human brain can distinguish between two languages.

It is exciting, because it reveals that the capacity to learn about the regularities of a language is not uniquely human. Still, we do not know whether this capacity is dogs’ specialty, or general among non-human species. Indeed, it is possible that the brain changes from the tens of thousand years that dogs have been living with humans have made them better language listeners, but this is not necessarily the case. Future studies will have to find this out” — concludes Attila Andics, senior author of the study. 

“And if you wonder how Kun-kun is doing after moving to Budapest: he leaves just as happily as he lived in Mexico City – he saw snow for the first time and he loves swimming in the Danube. We hope that he and his friends will continue to help us uncover the evolution of speech perception” — says Cuaya.  

—-

This study was published in NeuroImage titled “Speech naturalness detection and language representation in the dog brain.” written by Laura V. Cuaya, Raúl Hernández-Pérez, Marianna Boros, Andrea Deme, and Attila Andics. This research was funded by the Hungarian Academy of Sciences (Lendület program, Bolyai János Research Scholarship), the Mexican National Council of Science and Technology (CONACYT), the European Research Council (ERC), the Ministry for Innovation and Technology of Hungary (ÚNKP), the Eötvös Loránd Research Network and the Eötvös Loránd University.



Journal

NeuroImage

DOI

10.1016/j.neuroimage.2021.118811

Subject of Research

Animals

Share12Tweet8Share2ShareShareShare2

Related Posts

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HIRAID Framework Enhances Nurse and Patient Outcomes

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.