• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NRL researchers target cells for tissue engineering

Bioengineer by Bioengineer
January 5, 2022
in Biology
Reading Time: 6 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON – U.S. Naval Research Laboratory researchers in the Chemistry Division apply their knowledge of biology in conjunction with materials to improve understanding of how cells and tissues organize and apply new methods to affect cell communication.

Advanced understanding in this field may make it possible to develop wearable technology with real-time wound monitoring capability.

“Our work has applications to a number of important Department of Defense challenges, including enhanced wound healing, bioelectronics interfacing, and intercellular communication of stress response,” said Keith Whitener, Ph.D., a research chemist from the NRL Chemistry Division. “We are currently working on capabilities to improve wound monitoring for Sailors and Marines in the field.”

Advanced medical help is often unavailable to expeditionary and isolated warfighters, and even minor wounds can become infected and escalate rapidly to a life-threatening situation. Improved wound monitoring and treatment will help wounded warfighters receive the medical attention they need to ensure their survival and resilience.

The researchers build graphene-based devices called Transferrable Active Chemical Structures (TACS) to deliver information to individual cells and small groups of cells, either electronically or biochemically, to clarify and control how cells communicate with one another.

Stem cells of a single kind have the ability to develop into tissues and organs with many different kinds of cells, and the researchers are building tools to help determine how this phenomenon occurs.

Christopher So, Ph.D., a materials research scientist from the NRL Chemistry Division develops bulk biomaterials, such as gelatin or surface binding peptides to interface between the graphene oxide and stem cells as biocompatible adhesives. Since cells must remain in liquid culture to stay alive, the team needed to develop a material that could bond the TACS to the cells underwater.

“Developing biomaterials that adhere to the TACS membrane underwater was a challenge, as gelatin is quite hydrophilic,” said So. “Our team developed methods to process the material so that less water was at the interface which provides stronger interactions between the gel and the membrane. Underwater adhesion is a persistent issue for the Navy, and methods of adhering electronics underwater could lead to new biosensing applications.”

Graphene materials are usually toxic and damage cells, and the addition of gelatin is a simple way to protect the cells from the graphene oxide while providing a bio-friendly environment. Additionally, So designs and produces genetic materials to be delivered to cells, which carry instructions for stem cell differentiation.

Spatial control over cell populations is important to manipulate and integrate living systems used in advanced biological engineering.

The team developed techniques to transfer graphene-based thin film materials in a biocompatible way to interface a number of materials directly with live cells without sacrificing viability.

“We use partially reduced graphene oxide to print and transfer materials, including metallic structures, fluorescent cell dyes, and phase-separated block copolymers to mesenchymal stem cells,” Whitener said. “We found that our graphene oxide membranes are impermeable to most molecules, and we are exploiting this impermeability to use these membranes as cell masks for spatially patterned delivery of molecular stimuli in cells.”

The team also pioneered transferrable photolithography on graphene to enable more precise patterning of molecule delivery as well as co-culture patterning.

“This technique allows us to apply the precision of micro- and nano-fabrication to the messy world of living cells,” Whitener said.

Dhanya Haridas, Ph.D., a research biologist from the NRL Chemistry Division provides the eukaryotic expertise needed for this project. Haridas manages the cell line requirements and analyzes cell behavior under the various conditions explored in the program.

“TACS is an excellent example of a program harnessing the findings in the field of chemistry to further probe and understand biological processes that best serve to address the various needs of the Navy,” Haridas said. “We are in the process of developing techniques that will pave the way for decoding of cell-to-cell communication down to a single cell with applications in the field of wound healing and cell stress.”

The Chemistry Division conducts basic and applied research and development to address critical Navy needs and advance the frontiers of physical, chemical, biological, and material science as well as nanoscience. Research ranges from laboratory to intermediate and real-scale experiments and demonstrations.

About the U.S. Naval Research Laboratory

NRL is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 3,000 civilian scientists, engineers and support personnel.

For more information, contact NRL Corporate Communications at (202) 480-3746 or [email protected].

Cell culture with gelatin and reduced graphene oxide

Credit: U.S. Naval Research Laboratory

WASHINGTON – U.S. Naval Research Laboratory researchers in the Chemistry Division apply their knowledge of biology in conjunction with materials to improve understanding of how cells and tissues organize and apply new methods to affect cell communication.

Advanced understanding in this field may make it possible to develop wearable technology with real-time wound monitoring capability.

“Our work has applications to a number of important Department of Defense challenges, including enhanced wound healing, bioelectronics interfacing, and intercellular communication of stress response,” said Keith Whitener, Ph.D., a research chemist from the NRL Chemistry Division. “We are currently working on capabilities to improve wound monitoring for Sailors and Marines in the field.”

Advanced medical help is often unavailable to expeditionary and isolated warfighters, and even minor wounds can become infected and escalate rapidly to a life-threatening situation. Improved wound monitoring and treatment will help wounded warfighters receive the medical attention they need to ensure their survival and resilience.

The researchers build graphene-based devices called Transferrable Active Chemical Structures (TACS) to deliver information to individual cells and small groups of cells, either electronically or biochemically, to clarify and control how cells communicate with one another.

Stem cells of a single kind have the ability to develop into tissues and organs with many different kinds of cells, and the researchers are building tools to help determine how this phenomenon occurs.

Christopher So, Ph.D., a materials research scientist from the NRL Chemistry Division develops bulk biomaterials, such as gelatin or surface binding peptides to interface between the graphene oxide and stem cells as biocompatible adhesives. Since cells must remain in liquid culture to stay alive, the team needed to develop a material that could bond the TACS to the cells underwater.

“Developing biomaterials that adhere to the TACS membrane underwater was a challenge, as gelatin is quite hydrophilic,” said So. “Our team developed methods to process the material so that less water was at the interface which provides stronger interactions between the gel and the membrane. Underwater adhesion is a persistent issue for the Navy, and methods of adhering electronics underwater could lead to new biosensing applications.”

Graphene materials are usually toxic and damage cells, and the addition of gelatin is a simple way to protect the cells from the graphene oxide while providing a bio-friendly environment. Additionally, So designs and produces genetic materials to be delivered to cells, which carry instructions for stem cell differentiation.

Spatial control over cell populations is important to manipulate and integrate living systems used in advanced biological engineering.

The team developed techniques to transfer graphene-based thin film materials in a biocompatible way to interface a number of materials directly with live cells without sacrificing viability.

“We use partially reduced graphene oxide to print and transfer materials, including metallic structures, fluorescent cell dyes, and phase-separated block copolymers to mesenchymal stem cells,” Whitener said. “We found that our graphene oxide membranes are impermeable to most molecules, and we are exploiting this impermeability to use these membranes as cell masks for spatially patterned delivery of molecular stimuli in cells.”

The team also pioneered transferrable photolithography on graphene to enable more precise patterning of molecule delivery as well as co-culture patterning.

“This technique allows us to apply the precision of micro- and nano-fabrication to the messy world of living cells,” Whitener said.

Dhanya Haridas, Ph.D., a research biologist from the NRL Chemistry Division provides the eukaryotic expertise needed for this project. Haridas manages the cell line requirements and analyzes cell behavior under the various conditions explored in the program.

“TACS is an excellent example of a program harnessing the findings in the field of chemistry to further probe and understand biological processes that best serve to address the various needs of the Navy,” Haridas said. “We are in the process of developing techniques that will pave the way for decoding of cell-to-cell communication down to a single cell with applications in the field of wound healing and cell stress.”

The Chemistry Division conducts basic and applied research and development to address critical Navy needs and advance the frontiers of physical, chemical, biological, and material science as well as nanoscience. Research ranges from laboratory to intermediate and real-scale experiments and demonstrations.

About the U.S. Naval Research Laboratory

NRL is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 3,000 civilian scientists, engineers and support personnel.

For more information, contact NRL Corporate Communications at (202) 480-3746 or [email protected].



Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.