• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researcher’s discovery of new crystal structure holds promise for optoelectronic devices

Bioengineer by Bioengineer
January 4, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Bill Lax/Florida State University

TALLAHASSEE, Fla. — A Florida State University research team has discovered a new crystal structure of organic-inorganic hybrid materials that could open the door to new applications for optoelectronic devices like light-emitting diodes and lasers.

The research was published today in the journal Nature Communications.

Associate Professor of Chemical and Biomedical Engineering Biwu Ma has been working with a class of crystalline materials called organometal halide perovskites for the past few years as a way to build highly functioning optoelectronic devices. In this most recent work, his team assembled organic and inorganic components to make a one-dimensional structure.

"The basic building block of this class of materials is the same, like a Lego piece, with which you can assemble different structures," Ma said.

These Lego-like pieces, scientifically called metal halide octahedra, can form 3D networks, 2D layers, or even 1D chains. While 3D and 2D structures have been extensively explored, 1D structures are rare. Ma's team found a way to put these pieces together in a chain, which is surrounded by organic pieces to form a core-shell type wire. Millions of the organic-coated wires then stack together to form a crystalline bundle. From a distance these structures look like crystal needles.

It is the first time scientists have observed these hybrid materials forming a crystal structure like this.

This crystal displays very interesting optical properties, Ma said. For example, it is highly photo luminescent, which scientists can manipulate moving forward as they use it for different technologies.

Hybrid metal halide perovskites have received increased attention in recent years for their potential applications in various types of photon-related technologies such as photovoltaic cells, LEDS and lasers. This new study takes that work one step further by showing that this 1D structure could be another efficient form to produce bright light.

"They are good light emitters," Ma said. "This research tells us we have the capabilities to develop new structures and these materials have great opportunities for practical applications for devices like LEDs or lasers."

Ma came to FSU as part of the Energy and Materials Strategic Initiative with a mission of producing high-tech materials for next generation, energy sustainable technology.

His work is supported through the Energy and Materials Initiative and collaborators at the FSU-based National High Magnetic Field Laboratory where some of the experiments were conducted.

Ma's co-authors on the paper are FSU professors Ronald Clark from the Department of Chemistry and Theo Siegrist from the FAMU-FSU College of Engineering; FSU research faculty Yan Xin and Lambertus van de Burgt; postdoctoral researcher Zhao Yuan; FSU graduate students Chenkun Zhou, Yu Tian, Yu Shu, Joshua Messier, Jamie Wang and Konstantinos Kountouriotis; and University of Florida Professor Kirk Schanze and UF graduate student Ethan Holt.

###

Media Contact

Kathleen Haughney
[email protected]
850-644-1489
@floridastate

http://www.fsu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Social Support’s Impact on Geriatric Cancer Patients

November 9, 2025

Red Blood Cells and Tumor Cells: A Pro-Metastatic Link?

November 9, 2025

Major Global Study Finds Beta-Blockers Unnecessary for Post-Infarction Patients with Normal Cardiac Function

November 9, 2025

Simulating Cochlear Implant Sound for Hearing Experience

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Social Support’s Impact on Geriatric Cancer Patients

Red Blood Cells and Tumor Cells: A Pro-Metastatic Link?

Major Global Study Finds Beta-Blockers Unnecessary for Post-Infarction Patients with Normal Cardiac Function

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.