• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Traditional medicinal plant relieves malaria symptoms

Bioengineer by Bioengineer
December 20, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The active plant ingredient anemonin could provide a new approach in the treatment of malaria. It was identified by researchers from Ethiopia and Germany in a buttercup that is traditionally used in some African countries as a medicinal plant to treat malaria. Extracts from the plant significantly alleviated the symptoms of infected mice, as the team from Arba Minch University (AMU), Addis Ababa University (AAU) and Martin Luther University Halle-Wittenberg (MLU) reported in the journal Molecules.

Buttercup Ranunculus multifidus

Credit: Prof. Dr. Kaleab Asres

The active plant ingredient anemonin could provide a new approach in the treatment of malaria. It was identified by researchers from Ethiopia and Germany in a buttercup that is traditionally used in some African countries as a medicinal plant to treat malaria. Extracts from the plant significantly alleviated the symptoms of infected mice, as the team from Arba Minch University (AMU), Addis Ababa University (AAU) and Martin Luther University Halle-Wittenberg (MLU) reported in the journal Molecules.

A tea made from the leaves of the Ranunculus multifidus, a member of the buttercup family, is used in some parts of Africa to treat malaria. “So far it was not known which ingredients the plant has and which of them might have a healing effect,” says Professor Kaleab Asres from AAU, who had been aware of the use of the plant and initiated the study.

The pharmacists produced extracts from the plant leaves and tested their effectiveness on mice: “We infected the animals with the Plasmodium berghei parasite, which causes malaria in certain rodents including mice. In humans, malaria is caused by related species of plasmodia,” explains Betelhem Sirak from AMU. Some of the mice received chloroquine, an established and effective drug for treating malaria. Others were given different doses of the plant extract. The experiments were carried out in accordance with internationally recognised guidelines for the keeping and care of laboratory animals.

The results were promising: “Although the extracts did not work as well as chloroquine, they nevertheless had a clearly positive effect on the course of the disease. For example, the mice lost significantly less weight and their body temperature was also more stable than without treatment,” says Professor Peter Imming from MLU.

The researchers found the active ingredient anemonin in the plant extracts. “Ranunculus multifidus does not actually contain it. Anemonin is formed when the plant is injured, for example when it is crushed and the inside of its cells comes into contact with air,” continues Imming. This is probably why the extracts that were prepared in this way worked best.

The team suspects that, like chloroquine, anemonin affects the parasite’s metabolism, though it probably attacks it at a different location. That would be good news, because plasmodia have developed resistance to chloroquine in some areas of East and West Africa. “Anemonin could have the potential to circumvent this resistance,” says Imming. However, this requires a number of further studies in order to decipher the exact mechanism of action and to increase its effectiveness. If these tests are successful, clinical studies will follow over several years to confirm its effectiveness in patients.

Using pathogens in a test tube, the researchers investigated whether Ranunculus multifidus can also help combat other diseases for which it is traditionally used. They tested anemonin on bacteria similar to tuberculosis, but found it was ineffective – a result that is not all too disappointing for the pharmacists. As Imming explains: “A substance that attacks all types of cells would also attack human cells – and is therefore a poison.”

The researchers examined the effectiveness of anemonin on the widespread parasite species leishmania and schistosoma in a further study which was recently published in “Molecules”. Initial laboratory tests also showed promising results.

The studies were supported by the School of Graduate Studies of AAU, by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and by the projects PhytoWoodSynergies and Trisustain of the Federal Ministry of Education and Research.

Studies: Sirak B. et al., In Vivo Antimalarial Activity of Leaf Extracts and a Major Compound Isolated from Ranunculus multifidus Forsk. Molecules (2021). doi.org/10.3390/molecules26206179

Sirak B. et al., In Vitro Antileishmanial and Antischistosomal Activities of Anemonin Isolated from the Fresh Leaves of Ranunculus multifidus Forsk. Molecules (2021). doi.org/10.3390/molecules26247473



Journal

Molecules

DOI

10.3390/molecules26206179

Method of Research

Experimental study

Subject of Research

Animals

Article Title

In Vivo Antimalarial Activity of Leaf Extracts and a Major Compound Isolated from Ranunculus multifidus Forsk

Article Publication Date

13-Oct-2021

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Key Genes Identified in Nutrient Stress During Virus Infection

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025
Scolopsis ghanam captured by Rebekka Pentti for NYU Abu Dhabi Credit Rebekka Pentti for NYU Abu Dhabi

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025

Catfish Expert Releases Updated Volume on Catfish Biology and Evolution

August 26, 2025

SLC6A15 Linked to Keloids: Insights from Bioinformatics

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mitochondrial FLVCR1b Exports Heme to GAPDH

Revolutionizing Medicine: Wearable Ultrasound Technology Unveiled

Integrating Resistance and Fungicides for Faba Bean Gall Control

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.