• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers develop novel 3D printing technique to engineer biofilms

Bioengineer by Bioengineer
December 2, 2021
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anne S. Meyer, an associate professor of biology at the University of Rochester, and her collaborators at Delft University of Technology in the Netherlands, recently developed a 3D printing technique to engineer and study biofilms—three-dimensional communities of microorganisms, such as bacteria, that adhere to surfaces. The research provides important information for creating synthetic materials and in developing drugs to fight the negative effects of biofilms.

Graduate student with 3D printing materials to synthetically engineer biofilms

Credit: University of Rochester photo / J. Adam Fenster

Anne S. Meyer, an associate professor of biology at the University of Rochester, and her collaborators at Delft University of Technology in the Netherlands, recently developed a 3D printing technique to engineer and study biofilms—three-dimensional communities of microorganisms, such as bacteria, that adhere to surfaces. The research provides important information for creating synthetic materials and in developing drugs to fight the negative effects of biofilms.

Biofilms can be both harmful and beneficial to humans: they can coat the surfaces of materials and objects, including medical devices, and cause infections, and they are resistant to many drugs and disinfectants. However, biofilms are able to degrade toxic chemicals and environmental pollutants, making them useful in areas such as wastewater treatment.

In their latest research, published in the journal ACS Synthetic Biology, Meyer and her colleagues show that engineered biofilms can behave like natural ones. The researchers developed a 3D printing technique that allows them to synthetically engineer and study biofilms made of Escherichia coli (E. coli) bacteria. The technique will allow researchers to better study the properties of biofilms so they can harness their beneficial aspects and combat their harmful effects.

“This paper shows that our engineered biofilms can behave like native biofilms in many ways—including displaying emergent drug resistance—making them good model systems for anti-biofilm drug development,” Meyer says.

The work is the latest in a series of research efforts led by Meyer’s lab to develop synthetic materials that mimic nature. The materials have a variety of applications in the energy, medical, technology, and fashion sectors. The Meyer group has used bacteria to develop artificial nacre and graphene and has additionally developed other 3D printing techniques, including a novel bioprinting technique to print algae into living, photosynthetic materials.



Journal

ACS Synthetic Biology

DOI

10.1021/acssynbio.1c00290

Article Title

Emergent Biological Endurance Depends on Extracellular Matrix Composition of Three-Dimensionally Printed Escherichia coli Biofilms

Article Publication Date

15-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

TGF-β1 Gene Variants: Impact on Diabetes and Lipids

August 29, 2025
Elk Immune Responses to Experimental SARS-CoV-2 Inoculation

Elk Immune Responses to Experimental SARS-CoV-2 Inoculation

August 29, 2025

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

August 29, 2025

New Insights on Breast Cancer Metastasis Biomarkers

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metals and Sulfate in Air Pollution Linked to Increased Asthma Hospitalizations

Breakthrough: Second Pregnancy After Ovarian Tissue Transplant

Innovations in Transplantation: T Cell and Virus Therapies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.