• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study shows immune cells against COVID-19 stay high in number six months after vaccination

Bioengineer by Bioengineer
November 16, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FOR IMMEDIATE RELEASE

SARS-CoV-2 particle with its spike proteins

Credit: Graphic created by M.E. Newman, Johns Hopkins Medicine, using public domain images. Micrograph courtesy of the National Institute of Allergy and Infectious Diseases and SARS-CoV-2 spike protein 3D model courtesy of the National Institutes of Health

FOR IMMEDIATE RELEASE

A recent study by Johns Hopkins Medicine researchers provides evidence that CD4+ T lymphocytes — immune system cells also known as helper T cells — produced by people who received either of the two available messenger RNA (mRNA) vaccines for COVID-19 persist six months after vaccination at only slightly reduced levels from two weeks after vaccination and are at significantly higher levels than for those who are unvaccinated.

The researchers also found that the T cells they studied recognize and help protect against the delta variant of SARS-CoV-2, the virus that causes COVID-19. According to the U.S. Centers for Disease Control and Prevention, the delta variant — currently the predominant strain of SARS-CoV-2 in the United States — causes more infections and spreads faster than earlier forms of the virus.

The study findings were first reported online Oct. 25, 2021, in the journal Clinical Infectious Diseases.

“Previous research has suggested that humoral immune response — where the immune system circulates virus-neutralizing antibodies — can drop off at six months after vaccination, whereas our study indicates that cellular immunity — where the immune system directly attacks infected cells — remains strong,” says study senior author Joel Blankson, M.D., Ph.D., professor of medicine at the Johns Hopkins University School of Medicine. “The persistence of these vaccine-elicited T cells, along with the fact that they’re active against the delta variant, has important implications for guiding COVID vaccine development and determining the need for COVID boosters in the future.”

To reach these findings, Blankson and his colleagues obtained blood from 15 study participants (10 men and five women) at three times: prior to vaccination, between seven and14 days after their second Pfizer/BioNTech or Moderna vaccine dose, and six months after vaccination. The median age of the participants was 41 and none had evidence of prior SARS-CoV-2 infection.

CD4+ T lymphocytes get their nickname of helper T cells because they assist another type of immune system cell, the B lymphocyte (B cell), to respond to surface proteins — antigens — on viruses such as SARS-CoV-2. Activated by the CD4+ T cells, immature B cells become either plasma cells that produce antibodies to mark infected cells for disposal from the body or memory cells that “remember” the antigen’s biochemical structure for a faster response to future infections. Therefore, a CD4+ T cell response can serve as a measure of how well the immune system responds to a vaccine and yields humoral immunity.

In their study, Blankson and colleagues found that the number of helper T cells recognizing SARS-CoV-2 spike proteins was extremely low prior to vaccination — with a median of 2.7 spot-forming units (SFUs, the level of which is a measure of T cell frequency) per million peripheral blood mononuclear cells (PBMCs, identified as any blood cell with a round nucleus, including lymphocytes). Between 7 and 14 days after vaccination, the T cell frequency rose to a median of 237 SFUs per million PBMCs. At six months after vaccination, the level dropped slightly to a median of 122 SFUs per million PBMCs — a T cell frequency still significantly higher than before vaccination.

The researchers also looked six months after vaccination at the ability of CD4+ T cells to recognize spike proteins atop the SARS-CoV-2 delta variant. They discovered the number of T cells recognizing the delta variant spike protein was not significantly different from that of T cells attuned to the original virus strain’s protein.

Although the study was limited because of the small number of participants, Blankson feels it pinpoints areas that merit further research.

“The robust expansion of T cells in response to stimulation with spike proteins is certainly indicated, supporting the need for more study to show booster shots do successfully increase the frequency of SARS-CoV-2-specific T cells circulating in the blood,” says Blankson. “The added bonus is finding that this response also is likely strong for the delta variant.”

Along with Blankson, the members of the study team from Johns Hopkins Medicine are study lead author Bezawit Woldemeskel and Caroline Garliss.

This study was supported by the Johns Hopkins COVID-19 Vaccine-related Research Fund.

The authors do not have financial or conflict of interest disclosures. 



Journal

Clinical Infectious Diseases

Share12Tweet8Share2ShareShareShare2

Related Posts

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

August 27, 2025
blank

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Aged Garlic Extract’s Effects on Oral Bacteria

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

Blood and Fluid Signatures Predict IVF Embryo Success

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.