• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel inhibitor discovered for B-cell Lymphomas treatment

Bioengineer by Bioengineer
November 1, 2021
in Biology
Reading Time: 2 mins read
0
A Novel EZH2 Inhibitor Discovered for B-Cell Lymphomas
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A potent and selective enhancer of zeste homolog 2 (EZH2) inhibitor IHMT-EZH2-115 was recently discovered by researchers led by Prof. LIU Qingsong from Hefei Institutes of Physical Science of the Chinese Academy of Sciences for the treatment of B-cell lymphomas.

A Novel EZH2 Inhibitor Discovered for B-Cell Lymphomas

Credit: ZHOU Bin

A potent and selective enhancer of zeste homolog 2 (EZH2) inhibitor IHMT-EZH2-115 was recently discovered by researchers led by Prof. LIU Qingsong from Hefei Institutes of Physical Science of the Chinese Academy of Sciences for the treatment of B-cell lymphomas.

EZH2 is the enzymatic subunit of polycomb repressive complex 2. As a therapeutic target for the treatment of cancer, it has been extensively studied. Overexpression or mutation of EZH2 has been identified in hematologic malignancies and solid tumors. EPZ6438 (Tazemetostat) is the first selective inhibitor of EZH2 wild-type and mutants approved by the Food and Drug Administration (FDA). Despite the clinical success, the diversity of EZH2 inhibitors is still highly demanded for both the preclinical mechanistic and clinical pathological studies.

In this study, starting from EPZ6438 which exhibited anti-B-cell lymphoma efficacies in the preclinical models, the researchers obtained IHMT-EZH2-115 using a focused medicinal chemistry approach guided by computer-aided drug design.

According to the biochemical assay, IHMT-EZH2-115 was highly potent to both EZH2 wild-type and mutants. Meanwhile, it showed high selectivity over a broad range of histone methyltransferases. Furthermore, the inhibitor exhibited excellent antiproliferative activities against cells carrying the heterozygous EZH2 A677G, Y641F, Y641N, and Y641S mutations.

In vivo, IHMT-EZH2-115 exhibited favorable pharmacokinetic characteristics for oral administration and demonstrated dose-dependent antitumor efficacies in two xenograft mouse models of diffuse large B-cell lymphoma cell lines harboring EZH2 mutations, Pfeiffer (EZH2 A677G) and Karpas-422 (EZH2 Y641N).

These results indicate that IHMT-EZH2-115 may be a potential clinical development candidate for the EZH2 mutant driven tumors.



Journal

Journal of Medicinal Chemistry

DOI

https://doi.org/10.1021/acs.jmedchem.1c01154

Article Title

Discovery of IHMT-EZH2-115 as a Potent and Selective Enhancer of Zeste Homolog 2 (EZH2) Inhibitor for the Treatment of B-Cell Lymphomas

Article Publication Date

19-Oct-2021

Share14Tweet9Share3ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.