• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Arctic krill use twilight to guide their daily rhythms through the polar winter

Bioengineer by Bioengineer
October 19, 2021
in Biology
Reading Time: 3 mins read
0
Arctic krill use twilight to guide their daily rhythms through the polar winter
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Most animals sync their body clocks to the daily rhythm of the sun, but what happens during the polar winter when the sun never rises above the horizon? According to a study by Jonathan Cohen at the University of Delaware and colleagues, publishing October 19th in the open-access journal PLOS Biology, arctic krill can detect tiny changes in light intensity during polar winter days, allowing them to maintain their daily biological rhythms. Northerly range expansions in response to climate change may force other marine species to evolve similar adaptations to thrive in this extreme environment.

Arctic krill use twilight to guide their daily rhythms through the polar winter

Credit: Geir Johnsen, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

Most animals sync their body clocks to the daily rhythm of the sun, but what happens during the polar winter when the sun never rises above the horizon? According to a study by Jonathan Cohen at the University of Delaware and colleagues, publishing October 19th in the open-access journal PLOS Biology, arctic krill can detect tiny changes in light intensity during polar winter days, allowing them to maintain their daily biological rhythms. Northerly range expansions in response to climate change may force other marine species to evolve similar adaptations to thrive in this extreme environment.

The researchers measured midday light intensity during winter months in the Svalbard archipelago in the Arctic Ocean, from a land-based light observatory and a marine research vessel, and used underwater acoustic recordings to monitor the daily migrations of Arctic krill (Thysanoessa inermis). Krill are a type of small shrimp-like crustacean that form an important part of the diet of many large marine animals such as whales.

Light availability was just 2-fold higher at midday than at midnight in the middle of the arctic winter, compared to a 7-fold difference during spring and autumn. Nevertheless, the krill exhibited a strong circadian rhythm, migrating to the surface to feed during the polar night and retreating to the depths to avoid predators during the midday twilight.

To investigate the mechanisms underpinning these nightly migrations, the researchers used a technique called extracellular electroretinogram recording (ERG) to measure the visual sensitivity of krill in the laboratory. They found that krill were more sensitive to light at night than during the daytime, indicating that they are able to synchronize their circadian rhythms with small variations in external light cues.

Increases in visual sensitivity at night allow krill to acclimatize to tiny variations in light intensity and maintain their daily rhythms of behavior throughout the polar winter. Such adaptations may also be essential in regulating monthly and annual cycles of behavior and physiology, the authors say.

Cohen adds, “We found that the light environment during the high Arctic Polar Night has a complex timing of ‘light’ and ‘dark’ due to light coming from the sun below the horizon, the moon, and the aurora borealis. While this light is dim and unlike the typical photoperiod at lower latitudes, we show that it is sufficient to set a biological clock in krill, showing this animal has one of the more sensitive biological rhythms studied to date.”

#####

 

In your coverage, please use these URLs to provide access to the freely available article in PLOS Biology:  http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001413

Citation: Cohen JH, Last KS, Charpentier CL, Cottier F, Daase M, Hobbs L, et al. (2021) Photophysiological cycles in Arctic krill are entrained by weak midday twilight during the Polar Night. PLoS Biol 19(10): e3001413. https://doi.org/10.1371/journal.pbio.3001413

Author Countries: United States of America, United Kingdom, Norway

Funding: Support for this work came from the Norwegian Research Council (NFR) projects ArcticABC and DeepImpact (NFR grants 244319 and 300333, JB) and the Centre for Autonomous Marine Operations and Systems (NTNU AMOS, NFR 223254, GJ). Additional support came from the CHASE project, part of the Changing Arctic Ocean programme, jointly funded by the UKRI Natural Environment Research Council (NERC, project number: NE/R012733/1, KSL) and the German Federal Ministry of Education and Research (BMBF, project number: 03F0803A, KSL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3001413

Method of Research

Observational study

Subject of Research

Animals

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.