• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New analytical technique helps researchers spot subtle differences in subcellular chemistry

Bioengineer by Bioengineer
September 30, 2021
in Biology
Reading Time: 3 mins read
0
Chemists from the University of Illinois Urbana-Champaign are testing the limits of analytical chemistry by rapidly detecting subtle changes in cellular chemistry in an effort to boost early disease intervention.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAMPAIGN, Ill. — Researchers at the University of Illinois Urbana-Champaign can now rapidly isolate and chemically characterize individual organelles within cells. The new technique tests the limits of analytical chemistry and rapidly reveals the chemical composition of organelles that control biological growth, development and disease.

Chemists from the University of Illinois Urbana-Champaign are testing the limits of analytical chemistry by rapidly detecting subtle changes in cellular chemistry in an effort to boost early disease intervention.

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — Researchers at the University of Illinois Urbana-Champaign can now rapidly isolate and chemically characterize individual organelles within cells. The new technique tests the limits of analytical chemistry and rapidly reveals the chemical composition of organelles that control biological growth, development and disease.

The findings of the new study, led by chemistry professor Jonathan Sweedler, are published in the journal Nature Methods.

 The new approach locates and isolates individual organelles using light microscopy, then chemically analyzes them via MALDI MS, or matrix-assisted laser desorption/ionization mass spectrometry. The entire process takes an hour – a task that could take human analysts years to complete.

“Cells are not just little sacks full of chemicals,” Sweedler said. “They contain organelles that perform specific functions. The ability to characterize the chemical composition of individual organelles should lead to a better understanding of how cells develop and express diseases.”

The researchers said they are not the first to characterize organelles chemically. But using their automated targeting and chemical analysis approach is faster and more accurate, and assures that they analyze exactly what they intend. This way, they can determine the chemical makeup of a single organelle – not the average composition of a larger sample containing many organelles. 

For this study, the team focused on the cell’s vesicles – both dense-core and lucent varieties – collected from sea slugs, which are a commonly used neuroscience study model. Vesicles were selected as the organelle of interest because they are involved in chemical cell-to-cell signaling. The researchers said they are also larger than many of the other organelles, making them excellent first candidates to demonstrate the capabilities of the new approach.

“We analyzed approximately 1,000 individual vesicles from sea slugs,” chemistry professor Stanislav Rubakhin said. “We found heterogeneity among the types of lipids and biologically active peptides, indicating that MALDI MS is sensitive enough to detect chemical differences between what were thought to be the same types of organelles.”

Because disease is often spotted when heterogenous cells appear within a single tissue type, Rubakhin said, the ability to discern these differences at the subcellular level could lead to earlier detection and treatment.

“Our new workflow can help the scientific community complete the ‘parts list’ of the organelles found within cells,” graduate student Daniel Castro said. “Having that  parts list will help us determine if something is missing or extra within the organelles, helping us spot subtle changes and study how those changes correlate to diseases such cancer and those related to the brain and mental health.”

The National Institute on Drug Abuse and the National Human Genome Research Institute supported this study.

Sweedler is the director of the School of Chemical Sciences and is affiliated with the Beckman Institute for Advanced Science and Technology, the Carl R. Woese Institute for Genomic Biology and the Carle Illinois College of Medicine.

 

Editor’s notes:

To reach Jonathan Sweedler, call 217-244-7359; email [email protected]. 

The paper “Image-guided MALDI mass spectrometry for high-throughput single- organelle characterization” is available online and from the U. of I. News Bureau.

DOI: 10.1038/s41592-021-01277-2.



Journal

Nature Methods

DOI

10.1038/s41592-021-01277-2

Method of Research

Observational study

Subject of Research

Cells

Article Title

Image-guided MALDI mass spectrometry for high-throughput single- organelle characterization

Article Publication Date

30-Sep-2021

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Taenia Pisiformis Infection Alters Pregnant Rabbits’ Immune Response

September 9, 2025
blank

Tracing the Origins of Wnt Signaling Uncovers a Protein Superfamily Spanning the Tree of Life

September 9, 2025

From Quantum Mechanics to Quantum Microbes: A Yale Scientist’s Revolutionary Journey of Discovery

September 9, 2025

Scientists Harness Breakthrough Tool to Advance Canine Cancer Treatment

September 9, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UT San Antonio Health Science Center Ranks in Top 2% Worldwide for Research Output

University of Minnesota Medical School Secures $3.3 Million NIH Grant for Groundbreaking 5-Year Study on Infants Born with CMV

Gemini South Uncovers Elusive Cloud-Forming Chemical on Ancient Brown Dwarf

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.