• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New wireless photoelectric implant controls the activity of spinal neurons

Bioengineer by Bioengineer
September 27, 2021
in Biology
Reading Time: 3 mins read
0
Wireless implantable optoelectronic device for optogenetics
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Grégoire Courtine doesn’t hesitate to use the word “revolutionary” when describing the emerging field of optogenetics – a technology that uses pulses of light to control individual neural activity – and what it could mean for neuroscience. Courtine, director of the NeuroRestore research center (with neurosurgeon Jocelyne Bloch), is currently developing an optogenetic implant together with Stéphanie Lacour, who holds the Bertarelli Foundation Chair in Neuroprosthetic Technology. “Our system allows us to control the activity of any neuron in the spinal cord,” says Courtine. “In turn, this helps us to understand the role it plays in the overall functioning of the nervous system.”

Wireless implantable optoelectronic device for optogenetics

Credit: EPFL

Grégoire Courtine doesn’t hesitate to use the word “revolutionary” when describing the emerging field of optogenetics – a technology that uses pulses of light to control individual neural activity – and what it could mean for neuroscience. Courtine, director of the NeuroRestore research center (with neurosurgeon Jocelyne Bloch), is currently developing an optogenetic implant together with Stéphanie Lacour, who holds the Bertarelli Foundation Chair in Neuroprosthetic Technology. “Our system allows us to control the activity of any neuron in the spinal cord,” says Courtine. “In turn, this helps us to understand the role it plays in the overall functioning of the nervous system.”

The key to their breakthrough is the new implant technology developed by Lacour’s research group. “We found a way to encapsulate miniaturized LEDs in a flexible implant that is thin yet sturdy enough to be applied on the surface of a mouse’s spinal cord by sliding it underneath the vertebrae along the entire lumbar section,” she says. “Then we worked with our colleagues at ETH Zurich to create a wireless electronic circuit that can be used to switch on one or more LEDs and control the duration and intensity of the emitted light with extreme precision. Finally, through a customized embedded system-on-chip, the light pulses can be managed naturally, for example in response to muscular activity or some other physiological signal.” The optoelectronic implantable system is controlled via Bluetooth.

 

Behaving as naturally as possible

Courtine stresses that the system’s ability to run autonomously is crucial. “That frees us from the wire-based systems that are generally needed for this kind of research. Now we can observe mice as they move about freely and examine the role that neurons play in complex movements like walking and swimming, in an ecological environment.”

 

One of the biggest challenges in developing the technology was finding a way to administer light pulses that penetrate into the depth of the spinal cord without being absorbed and reflected by nerve fibers. To solve that problem, the research team modified the LEDs to emit red light – a color that is much less easily impacted by nerve fibers than the blue light typically emitted by the diodes.

 

On the path to new therapies

Courtine and Lacour’s discovery is likely to boost the development of new therapeutic applications for optogenetics. The ability to stimulate or inhibit specific spinal-cord neurons using light pulses will eventually allow doctors to reduce pain, improve autonomic function and even treat paralysis. There may still be a long way to go before their implants are used clinically, but the research team is confident that a version of their implant will be available for human patients in the not-too-distant future.

Reference :

‘Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nature Biotechnology, September 27th, 2021, DOI: 10.1038/s41587-021-01019-x



Journal

Nature Biotechnology

DOI

10.1038/s41587-021-01019-x

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice.

Article Publication Date

27-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.