• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plants evolved complexity in two bursts — with a 250-million-year hiatus

Bioengineer by Bioengineer
September 16, 2021
in Biology
Reading Time: 4 mins read
0
African lily
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A Stanford-led study reveals that rather than evolving gradually over hundreds of millions of years, land plants underwent major diversification in two dramatic bursts, 250 million years apart. The first occurred early in plant history, giving rise to the development of seeds, and the second took place during the diversification of flowering plants. 

African lily

Credit: Andrew Leslie

A Stanford-led study reveals that rather than evolving gradually over hundreds of millions of years, land plants underwent major diversification in two dramatic bursts, 250 million years apart. The first occurred early in plant history, giving rise to the development of seeds, and the second took place during the diversification of flowering plants. 

The research uses a novel but simple metric to classify plant complexity based on the arrangement and number of basic parts in their reproductive structures. While scientists have long assumed that plants became more complex with the advent of seeds and flowers, the new findings, published Sept. 17 in Science, offer insight to the timing and magnitude of those changes.

“The most surprising thing is this kind of stasis, this plateau in complexity after the initial evolution of seeds and then the total change that happened when flowering plants started diversifying,” said lead study author Andrew Leslie, an assistant professor of geological sciences at Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth). “The reproductive structures look different in all these plants, but they all have about the same number of parts during that stasis.”

An unusual comparison

Flowers are more diverse than every other group of plants, producing colors, smells and shapes that nourish animals and delight the senses. They are also intricate: petals, anthers and pistils interweave in precise arrangements to lure pollinators and trick them into spreading pollen from one flower to another. 

This complexity makes it difficult for scientists to compare flowering plants to plants with simpler reproductivesystems, such as ferns or some conifers. As a result, botanists have long focused on characteristics within family groups and typically study evolution in non-flowering plants separately from their more intricate flowering relatives. 

Leslie and his co-authors overcame these differences by designing a system that classifies the number of different kinds of parts in reproductive structures based on observation alone. Each species was scored according to how many types of parts it has and the degree to which it exhibited clustering of those parts. They categorized about 1,300 land plant species from about 420 million years ago until the present.

“This tells a pretty simple story about plant reproductive evolution in terms of form and function: The more functions the plants have and the more specific they are, the more parts they have,” Leslie said. “It’s a useful way of thinking about broad-scale changes encompassing the whole of plant history.”

From shrubs to blooms

When land plants first diversified in the early Devonian about 420 million to 360 million years ago, Earth was a warmer world devoid of trees or terrestrial vertebrate animals. Arachnids like scorpions and mites roamed the land amongst short, patchy plants and the tallest land organism was a 20-foot fungus resembling a tree trunk. After the Devonian, huge changes occurred in the animal kingdom: Land animals evolved to have large body sizes and more varied diets, insects diversified, dinosaurs appeared – but plants didn’t see a major change in reproductive complexity until they developed flowers.

“Insect pollination and animal seed dispersal may have appeared as early as 300 million years ago, but it’s not until the last 100 million years that these really intricate interactions with pollinators are driving this super high complexity in flowering plants,” Leslie said. “There was such a long period of time where plants could have interacted with insects in the way that flowering plants do now, but they didn’t to the same degree of intricacy.”

In the Late Cretaceous, about 100 to 66 million years ago, Earth more closely resembled the planet we know today – a bit like Yosemite National Park without the flowering trees and bushes. The second burst of complexity was more dramatic than the first, emphasizing the unique nature of flowering plants, according to Leslie. That period gave rise to plants like the passionflower, which can have 20 different types of parts, more than twice the number found in non-flowering plants.

The researchers classified 472 living species, part of which Leslie carried out on and around Stanford’s campus by simply pulling apart local plants and counting their reproductive organs. The analysis includes vascular land plants – everything except mosses and a few early plants that lack supportive tissue for conducting water and minerals.

“One thing we argue in this paper is that this classification simply reflects their functional diversity,” Leslie said. “They basically split up their labor in order to be more efficient at doing what they needed to do.”

###

Study co-authors include Carl Simpson of the University of Colorado Museum of Natural History and Luke Mander of The Open University.



Journal

Science

DOI

10.1126/science.abi6984

Article Title

Reproductive innovations and pulsed rise in plant complexity

Article Publication Date

17-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.