• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

To colonize different environments, bacteria precisely tune their nanomotors

Bioengineer by Bioengineer
September 15, 2021
in Biology
Reading Time: 4 mins read
0
Ecoli-rotating
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In their roughly 3.5 billion years on Earth, bacteria have fine-tuned the art of colonizing all kinds of habitats, from the inner lining of digestive tracts to the blistering hot waters of geysers. But in their quest for world domination, bacteria face a critical snag when moving across diverse environments — preserving their navigational apparatus.

Ecoli-rotating

Credit: Dr. Pushkar Lele/Texas A&M Engineering

In their roughly 3.5 billion years on Earth, bacteria have fine-tuned the art of colonizing all kinds of habitats, from the inner lining of digestive tracts to the blistering hot waters of geysers. But in their quest for world domination, bacteria face a critical snag when moving across diverse environments — preserving their navigational apparatus.

In a new study, published in the journal Nature Communications, researchers at Texas A&M University have found that the appendages controlling bacterial navigation, called the flagella, adjust to changes in the viscosity of fluids very precisely. This adaptation enables the bacterium to continue using its flagella for searching for nutrients, sensing surfaces and establishing colonies in different habitats.

“There is a significant interest in the biomedical fields to understand how individual bacterial cells transition from a lonesome existence to a community lifestyle,” said Dr. Pushkar Lele, associate professor in the Artie McFerrin Department of Chemical Engineering. “To answer this question, we are investigating the role of the flagellum as a response hub when a bacterium encounters different types of environments.”

To navigate towards nutrients, bacteria employ chemotaxis, a process by which they sense chemicals and swim in the direction of increasing or decreasing concentrations. The role of the flagellum in navigation is known — it reversibly switches between clockwise and counterclockwise directions of rotation to facilitate chemotaxis. Flagellar rotation is powered by internal stator units, similar in concept to the stator that rotates the rotor within an electric motor of a ceiling fan. 

But more recent evidence suggests that the flagellum also plays a role in sensing changes in the cell’s mechanical environment — a process called mechanosensing. So, if the bacterium encounters an increase in resistance to the rotation of its flagella, it would be sensed as an increase in the viscosity of the environment.  

In response, the flagellar motor recruit extra stator units to compensate by developing more power. However, research has also shown that such an increase in the resistance prevents the flagellum from switching directions of rotation, potentially rendering the chemotaxis machinery defunct.

“This observation posed a conundrum,” said Lele. “Chemotaxis is unlikely to be restricted to one type of viscous environment. So, we wondered if there were any adaptations happening within the flagellar motor that restored directional switching, and by extension, chemotaxis in varying viscous environments.”

For their experiments, the researchers chose a strain of E. coli with a fluorescently-labeled chemotaxis protein, CheY-P, that binds to the flagellar motor to initiate flagellar switching. The researchers applied resistance to the motor and then observed the level of fluorescence using high-powered microscopes. They found that the fluorescence dropped below baseline when they removed the stator proteins using genetic techniques.

In comparison, the fluorescence level remained at the baseline when the stators continually delivered torque to rotate the motor. This suggested that the presence of the stator units promoted CheY-P binding to the motor.

Based on these observations, the team theorized that in high viscosity environments, the increase in mechanical torque provided by the extra stator units increases the binding of CheY-P to the motor, thereby maintaining homeostasis in the switching function of the flagellum.

Lele pointed out this phenomenon of fine-tuning the internal state to adapt to changing mechanical loads bears a crude resemblance to proprioceptive adaptation, whereby organisms with a nervous system continuously intuit their position and velocity to make adaptive changes to achieve homeostasis or a stable physiological state . For example, insects’ muscular skeletal systems internally adapt and adjust to varying loads on their limbs to maintain their posture and grip when walking on the floor or the ceiling.

“Homeostasis in flagellar switching appears to help motile bacteria form swarms and colonize different environments,” said Lele. “Explaining the basis for the observed link between mechanosensing and chemotaxis will be important in preventing bacterial colonization, infections and antibiotic resistance in the future.”

###

Dr. Jyot Antani is the lead author on the work and is former doctoral student from the chemical engineering department at Texas A&M. Other contributors to this research include Rachit Gupta, Annie Lee and Kathy Rhee from the chemical engineering department; and Dr. Michael Manson from the Department of Biology at Texas A&M.

This research is funded by the Department of Defense and the National Institute of General Medical Sciences United States.



Journal

Nature Communications

DOI

10.1038/s41467-021-25774-2

Method of Research

News article

Subject of Research

Not applicable

Article Title

Mechanosensitive recruitment of stator units promotes binding of the response regulator CheY-P to the flagellar motor

Article Publication Date

14-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

Gene Body Methylation Drives Diversity in Arabidopsis

September 12, 2025

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.