• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Genome study reveals ‘gray zone’ of animals transitioning from 1 species to 2 — PLOS

Bioengineer by Bioengineer
December 27, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Genome study reveals widespread "gray zone" of animals transitioning from one species to two.

There is usually no ambiguity about species delineation when distant lineages are compared. For instance, there is no doubt that dogs and cats belong to two different species. However, such distinction becomes less clear-cut when comparing recently diverged groups of individuals, between which interbreeding is still to some extent possible. This is the paradox of speciation: a gradual, continuous process that ultimately leads to distinct biological entities.

New research publishing December 27 in the open access journal PLOS Biology from French biologists Camille Roux, Christelle Fraïsse, Jonathan Romiguier, Yoann Anciaux, Nicolas Galtier and Nicolas Bierne (CNRS – University Montpellier) characterizes the ability of populations to interbreed and exchange genes as a function of the level divergence of their genomes. These authors improved existing methods, allowing them to infer the history of speciation by modelling the confounding effect of natural selection, drift and migration rates, thereby accounting for the differing patterns of variation seen in different parts of the genome.

The new method was applied to a large genomic dataset consisting of 61 pairs of populations or species of animals. Their analysis uncovered a zone of intermediate molecular divergence, between 0.5% and 2% of differences between genomes, in which the transition from one to two species proceeds – the "gray zone of speciation." Pairs of populations/species falling in this zone are typically characterized by a semi-permeable genome: some genes are freely exchanged between populations, but some are blocked and contribute to isolation – the so-called species barriers. Among the 61 population pairs in this study, the "gray zone" included types of mussel, gorilla, trumpet worm, earthworm, butterfly and mosquito where the animals are in the process of splitting into two species, but still occasionally exchange genetic material.

The authors found that the limits of the gray zone appear somewhat universal and independent of the life-history traits or ecology of the species. This multi-species analysis sheds light on the process of speciation at genomic level, but further highlights the intrinsic difficulty of delineating species in the "gray zone," with important implications for conservation and the management of animal biodiversity.

###

Citation: Roux C, Fraïsse C, Romiguier J, Anciaux Y, Galtier N, Bierne N (2016) Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLoS Biol 14(12): e2000234. doi:10.1371/journal.pbio.2000234

Funding: European Research Council (ERC) https://erc.europa.eu/ (grant number ERC grant 232971). PopPhyl project. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. French National Research Agency (ANR) http://www.agence-nationale-recherche.fr/en/project-based-funding-to-advance-french-research/ (grant number ANR-12-BSV7- 0011). HYSEA project. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

PLOS Biology
[email protected]

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Drug Targeting Mitochondria Strikes Cancer Cells from Within

September 2, 2025

Remifentanil and Neuromuscular Blockers in Pediatric Intubation

September 2, 2025

Nurse Activity Levels Linked to Work Demographics

September 2, 2025

Global Trends and Disparities in Urinary Tumors (1990-2046)

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • Needlestick Injury Rates in Nurses and Students in Pakistan

    129 shares
    Share 52 Tweet 32
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Drug Targeting Mitochondria Strikes Cancer Cells from Within

Remifentanil and Neuromuscular Blockers in Pediatric Intubation

Nurse Activity Levels Linked to Work Demographics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.