• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Defect engineering assisting in high-level anion doping towards fast charge transfer kinetic

Bioengineer by Bioengineer
July 22, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The research team of Prof. Xiaobo Ji and associate Prof. Guoqiang Zou has proposed an ingenious oxygen vacancy (OV)-engineering strategy to realize high content anionic doping in TiO2 and offered valuable insights into devise electrode materials with fast charge transfer kinetics in the bulk phase. The article titled “High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors” is published in Science Bulletin. Xinglan Deng is listed as first author and Prof. Guoqiang Zou as corresponding author.

The rate-determining process for sodium storage in TiO2 is greatly depending on charge transfer happening in the electrode materials owing to its inferior diffusion coefficient and electronic conductivity. Apart from reducing the diffusion distance of ion/electron, the increasement of ionic/electronic mobility in crystal lattice is very important for charge transport. Here, an OV engineering assisted in high content anion (S/Se/P) doping strategy to enhance its charge transfer kinetics for ultrafast sodium-storage performance is proposed. The theoretical calculations have predicted that OV-engineering evokes the spontaneous S doping into TiO2 phase and achieves high anionic dopant concentration to bring about impurity state electron donor and electronic delocalization over S occupied sites, which can largely reduce the migration barrier of Na+. Accordingly, experimental measurements validate the realization of high content anion (S/Se/P) doping and the significantly enhanced Na ion diffusivity and conductivity in prepared electrode materials.

The optimized A-TiO2-x-S/C anode (with S content of 9.82 at%) exhibits extraordinarily high-rate capability with 209.6 mAh g-1 at 5000 mA g-1. When applied as anode materials, the assembled SIC delivers an ultrahigh energy density of 150.1 Wh kg-1 at a power density of 150 W kg-1. This work provides a new strategy to realize the high content doping of anion, and enhance the charge transfer kinetics for TiO2, which sheds a light on the design of electrode materials with fast kinetic.

###

See the article:

Xinglan Deng, Kangyu Zou, Roya Momen, Peng Cai, Jun Chen, Hongshuai Hou, Guoqiang

Zou, Xiaobo Ji. High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Science Bulletin,

2021, https://doi.org/10.1016/j.scib.2021.04.042

Media Contact
Yan Hongtao
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scib.2021.04.042

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.