• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cellular uptake of nanoparticles keys for further development of temperature sensing

Bioengineer by Bioengineer
July 16, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A paper by Kazan Federal University was published in Journal of Nanoparticle Research

IMAGE

Credit: Kazan Federal University

The article represents the transmission electron microscopy (TEM) and flow cytometry study of A-549 (human lung carcinoma) cellular uptake of Pr3+:LaF3 nanoparticles. The Pr3+:LaF3 nanoparticles are promising platforms for cell nano-sensors.

The objective of the work was to study the influence of nanoparticle morphology (nanoplates and nanospheres) on cytotoxicity and the dynamic of cellular uptake.

In the flow cytometry method, the cells go through a small tube (as a flow) and are irradiated by a laser. Cells scatter the laser light, and this scattering efficiency can give new information about some processes inside the cell. TEM method allows visualizing the cells with 0.2 nm (10-9 m) spatial resolution.

Both nanoplates and nanospheres are easily internalized by A-549 cells via macropinocytosis after 2, 10, and 24 hours of nanoparticle exposure. The nanoparticles were not observed in cell nuclei and other organelles. During macropinocytosis, relatively large vesicles (0.2-5 μm) are formed. The flow cytometry experiments revealed that the internalized nanoparticles increase the cells’ optical inhomogeneity, which leads to an increase of side scattered light intensity by ~10% without any dynamic during 24 hours (for both morphotypes of nanoparticles). Probably, it can be explained by the fact that macropinocytosis is a dynamic process and some macropinosomes appear and move in the cytoplasm; in turn, other macropinosomes travel back to the cell surface of the membrane and release the content to the extracellular space; consequently, the equilibrium is achieved.

Finally, nanoplates and nanospheres have low tocixity and are easily internalized by cells. These facts pave the way toward creating nano-sensors for cells.

The luminescence of Pr3+:LaF3 nanoparticles (spectral shape) depends on the temperature in the physiological temperature range (20 to 60ºC). This fact, as well as nanosized dimensionality of Pr3+:LaF3 pave the way toward temperature sensing at cell level with spatial resolution less than one micrometer. Such temperature sensors are important in fundamental biology and pharmaceuticals. These sensors allow studying thermodynamic cell responses on external factors (drugs and physical conditions). This information is very important for pre-clinical studies of drugs.

For further development of the research, the authors plan to provide the targeted orientation of the nanoparticles to a specific cell organelle. This property can be achieved by creating a special bio-compatible shell around the Pr3+:LaF3 nanoparticle. This shell should contain special organic molecules which provide attachment to the specific cell organelle. There is also a plan to obtain a temperature map of the whole cell in the microscope.

###

Media Contact
Yury Nurmeev
[email protected]

Original Source

https://eng.kpfu.ru/novosti/cellular-uptake-of-unmodified-pr3-laf3-provides-keys-for-further-development-of-temperature-sensing/

Related Journal Article

http://dx.doi.org/10.1007/s11051-021-05249-7

Tags: Cell BiologyChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.