• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Single protein may hold secret to treating Parkinson’s disease and more

Bioengineer by Bioengineer
December 26, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New details learned about a key cellular protein could lead to treatments for neurodegenerative diseases, such as Parkinson's, Huntington's, Alzheimer's, and amyotrophic lateral sclerosis (ALS).

At their root, these disorders are triggered by misbehaving proteins in the brain. The proteins misfold and accumulate in neurons, inflicting damage and eventually killing the cells. In a new study, researchers in the laboratory of Steven Finkbeiner, MD, PhD, at the Gladstone Institutes used a different protein, Nrf2, to restore levels of the disease-causing proteins to a normal, healthy range, thereby preventing cell death.

The researchers tested Nrf2 in two models of Parkinson's disease: cells with mutations in the proteins LRRK2 and α-synuclein. By activating Nrf2, the researchers turned on several "house-cleaning" mechanisms in the cell to remove excess LRRK2 and α-synuclein.

"Nrf2 coordinates a whole program of gene expression, but we didn't know how important it was for regulating protein levels until now," explained first author Gaia Skibinski, PhD, a staff research scientist at Gladstone. "Overexpressing Nrf2 in cellular models of Parkinson's disease resulted in a huge effect. In fact, it protects cells against the disease better than anything else we've found."

In the study, published in the Proceedings of the National Academy of Sciences, the scientists used both rat neurons and human neurons created from induced pluripotent stem cells. They then programmed the neurons to express Nrf2 and either mutant LRRK2 or α-synuclein. Using a one-of-a-kind robotic microscope developed by the Finkbeiner laboratory, the researchers tagged and tracked individual neurons over time to monitor their protein levels and overall health. They took thousands of images of the cells over the course of a week, measuring the development and demise of each one.

The scientists discovered that Nrf2 worked in different ways to help remove either mutant LRRK2 or α-synuclein from the cells. For mutant LRRK2, Nrf2 drove the protein to gather into incidental clumps that can remain in the cell without damaging it. For α-synuclein, Nrf2 accelerated the breakdown and clearance of the protein, reducing its levels in the cell.

"I am very enthusiastic about this strategy for treating neurodegenerative diseases," said Finkbeiner, a senior investigator at Gladstone and senior author on the paper. "We've tested Nrf2 in models of Huntington's disease, Parkinson's disease, and ALS, and it is the most protective thing we've ever found. Based on the magnitude and the breadth of the effect, we really want to understand Nrf2 and its role in protein regulation better."

The scientists say that Nrf2 itself may be difficult to target with a drug because it is involved in so many cellular processes, so they are now focusing on some of its downstream effects. They hope to identify other players in the protein regulation pathway that interact with Nrf2 to improve cell health and that may be easier to drug.

###

Other Gladstone scientists on the study include Vicky Hwang, D. Michael Ando, Aaron Daub, Alicia Lee, Abinaya Ravisankar, Sara Modan, and Mariel Finucane. Benjamin Shaby from Penn State University also took part in the research.

Funding was provided by the National Institutes of Mental Health, National Institute of Neurological Disorders and Stroke, National Human Genome Research Institute, California Institute of Regenerative Medicine, Taube/Koret Center, Michael J. Fox Foundation, ALS Association, National Center for Research Resources, and the Betty Brown family. The work is dedicated to the memory of Nita Hirsch.

Media Contact

Dana Smith
[email protected]
415-734-2532
@GladstoneInst

http://www.gladstone.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.