• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UTA developing technology using nanoparticles, ultrasound to detect tiny breast tumors

Bioengineer by Bioengineer
July 14, 2021
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new diagnostic tool for small tumors in breasts

IMAGE

Credit: UT Arlington

A bioengineering professor at The University of Texas at Arlington is developing a technique to diagnose tiny breast tumors that could reduce the anxiety, uncertainty and high costs often faced by patients.

Biopsy results show that about 80% of very small tumors are benign; 15% are low-grade, non-life-threatening cancers; and 5% are aggressive and invasive tumors that need immediate attention.

The National Institutes of Health recently awarded Baohong Yuan a three-year grant worth more than $440,000 to develop a method to use high-resolution imaging with super-sensitive temperature probes to determine if these tiny tumors are active and potentially harmful and, if so, to what degree.

“The majority of very small tumors may be nothing to worry about, but to know for sure costs a lot of money, takes a lot of time and leads to a lot of anxiety in patients,” he said. “We hope that our method will allow doctors to diagnose and treat very small tumors more effectively without the need for a biopsy in every case, saving time and money and minimizing worry.”

In active tumors, cells grow quickly and consume energy, which generates heat. Yuan said he hopes to use biocompatible nanoparticles with ultrasound to detect the temperature difference between the tumors and the surrounding tissue. The nanoparticles glow weakly at normal body temperature but increase in intensity at higher temperatures.

Once the nanoparticles reach the tumors via the bloodstream, they become activated by the tumor and ultrasound. Yuan says the increased intensity is both easily detected and provides tissue thermal information. Using a process he developed for high-resolution imaging for deep tissue, Yuan can analyze the glow of the nanoparticles in the tumor to determine if it is active or if further observation or a biopsy are warranted.

The nanoparticles naturally pass out of the body, so the procedure will be safe for the patient.

Yuan has previously developed high-resolution imaging for deep tissue so doctors can use sharper pictures to monitor or evaluate tumor treatment. His work focuses on using ultrasound-mediated techniques, combined with microparticles or nanoparticles that tumors attract, to image small but deep tumors.

When exposed to ultrasound waves, the particles become temporarily fluorescent and can be detected by a non-invasive probe system that he and other researchers designed. The technique enables researchers to see, measure, analyze and manipulate tissue in new ways, and resulting the information is useful in deciding treatment.

Yuan’s work on deep-tissue imaging has had a significant impact on cancer diagnosis and treatment, says Bioengineering Department Chair Michael Cho.

“When successfully completed, his work can lead to overcoming multiple challenges of detecting small tumors and distinguishing active vs. inactive breast cancers,” Cho said. “Solving the problem of overdiagnosis and overtreatment by new imaging technology can significantly minimize the adverse impact of cancer treatments.”

###

– Written by Jeremy Agor, College of Engineering

Media Contact
Herb Booth
[email protected]

Original Source

https://www.uta.edu/news/news-releases/2021/07/12/yuan-breast-tumors

Tags: Biomedical/Environmental/Chemical EngineeringBreast CancercancerCell BiologyTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Integrated resources set to enhance cardiovascular, kidney, and metabolic healthcare

October 1, 2025

Distributed Brain Data Boosts Speech Decoding Accuracy

October 1, 2025

REM Sleep Disorder Linked to Inflammatory Bowel Disease

October 1, 2025

NYU Grossman School of Medicine Leader Honored with 2025 Research Achievement Award

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prognostic Model for Colorectal Cancer Developed

New AI Technology Revolutionizes Visualization Inside Fusion Energy Systems

Integrated resources set to enhance cardiovascular, kidney, and metabolic healthcare

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.