• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Does bubble cascade form only in a glass of Guinness beer?

Bioengineer by Bioengineer
June 22, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Osaka University and Kirin HD explain the physics that underpins cascading flow of nitrogenated stout beer, with applications to water purification and pharmaceutical production

IMAGE

Credit: Osaka University

Osaka, Japan – As far back as 1959, brewers at Guinness developed a system that fundamentally altered the texture of their draught beer. Now, researchers from Japan have solved the physics of Guinness’ cascading flow, which will have widespread applications to technology in life and environmental sciences.

In a study recently published in Physical Review E, researchers from Osaka University have revealed why the nitrogen bubbles of Guinness draught beer flow similarly to a fluid.

The bubbles of many just-opened carbonated beverages simply move upwards, following Archimedes’ principle. Much of the appeal of the draught from Guinness beer is that the bubbles sink and flow collectively, known as “bubble cascade.” Brewers and researchers believe this collective flow behavior must have something to do with how draught Guinness beer is dispensed. At present, the physics of the collective flow remains unresolved, something the researchers at Osaka University aimed to address.

“A wide range of lab work and computational simulations has been useful for estimating individual and collective bubble motion, but only after the flow has occurred,” says lead and senior author of the study Tomoaki Watamura, Osaka University. “We’re interested in predicting cascading flow via mathematical modeling, rather than results from experiments or simulations after the fact.”

To do this, the researchers used numerical simulations to approximate the fluid and bubble particles of cascading draught beer. Bench work experiments consisted of testing a transparent “pseudo-Guinness fluid,” which is a mixture of ultra-small hollow particles in tap water, and actual Guinness beer.

“The simulation results matched experimental data, over a wide range of glass sizes and other conditions,” explains Watamura. “We have developed the most successful simulation of cascading flow in Guinness beer to date.”

Intriguingly, cascading bubbles may not require a nitrogenated stout beer after all.

“The bubble diameter and bubble volume fraction in carbonated water, poured into the approximate dimensions of a common 200-liter drum with inclination angle, facilitate cascading bubbles,” says Hideyuki Wakabayashi, Kirin HD. “Furthermore, the associated fluid motion near an inclined container wall pertains to maintenance of product quality during brewing, suggesting an immediate application of our findings.”

In addition to proving insight into optimizing brewing conditions, this research has clear applications to any work that involves fermenters or cell incubation. As such, the Osaka University and Kirin HD researchers’ findings may be used to meet diverse needs, such as pharmaceutical production from industrial-scale cell cultures, and city water purification.

###

The article, “Bubble cascade may form not only in stout beers,” was published in Physical Review E at DOI: https://doi.org/10.1103/PhysRevE.103.063103

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan’s leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan’s most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en

Media Contact
Saori Obayashi
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevE.103.063103

Tags: Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Predicting Lung Infections After Brain Hemorrhage

Predicting Lung Infections After Brain Hemorrhage

August 2, 2025
blank

Impact of Morphology and Location on Aneurysms

August 2, 2025

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    40 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Lung Infections After Brain Hemorrhage

Impact of Morphology and Location on Aneurysms

Unraveling EMT’s Role in Colorectal Cancer Spread

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.