• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

RUDN University biologists develop a rapid test for detecting the fire blight in plants

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

RUDN University biotechnologists have created a method for detection of bacterial infection in apple, pear, hawthorn and other plants of the Rosaceae family. The test does not require laboratory equipment, the result is ready in 10 minutes. This will allow detecting the disease quickly and prevent the spread of infection. The results are published in Physiological and Molecular Pathology of Plants.

Erwinia amylovora bacteria causes a dangerous infectious disease in plants — a fire blight. Most plants of the Rosaceae family are vulnerable to it, for example, hawthorn, apple, pear. The bacteria causes the blossom to wither, the leaves dry up and curl, the bark develop necrotic lesions. The disease can spread through infected plants, garden tools, and with the wind, which carries the exudate produced by lesions. To stop the spread of infection in time, we need ways to diagnose it quickly and effectively. Existing testing methods require laboratory equipment. This slows down diagnostics. RUDN University biotechnologists have developed a method that gives the results in 10 minutes right “on the spot”.

“To control E. amylovora, disease diagnosis right in the orchard or nursery is important, especially for monitoring disease outbreaks or independent control of farm and private orchards. Thus our main objective was to develop an express-test to detect E. amylovora and compare different organs of infected plants for optimization”, Shyatesa Razo, PhD student at RUDN University

The new test is based on immunochromatographic analysis. This is one of the most universal diagnostic methods — this is how most modern express tests works (for example, a pregnancy test or SARS-CoV-2 test) are arranged. A test strip is placed in a biological liquid – for example, a leaf extract. Specific antibodies are applied to the strip, which “bind” to the desired substance and color certain areas forming the stripes. By their number, it can be concluded that a particular substance is present in the biological fluid. The aim of the RUDN University biotechnologists was to select such antibodies that would allow to determine the presence of Erwinia amylovora in the plant liquids.

To obtain specific antibodies, biologists immunized chinchilla rabbits with Erwinia amylovora. 7-10 days after the last injections, biologists took blood samples from the animals and isolated the necessary immunoglobulin IgG (protein cells that neutralize the pathogen).

The resulting test was verified on infected plants from the Voronezh region — 121 samples of apple, pear, hawthorn, quince, blackthorn and cherry. The test fluid was isolated from leaves, twigs, flowers, fruits, and bacterial mucus. As a result, in 93.5% of cases, the results of the rapid test coincided with the results of the PCR test, which requires more time and special laboratory equipment. RUDN University biotechnologists also determined that it is best to use the vascular tissues of the plant.

“Today, the diagnosis of plant pathogens is on the rise; the number of rapid and sensitive methods of analysis, both laboratory and non-laboratory, is increasing. However, the distribution of the pathogen in the plant determines the appropriate sampling for any assay. We determined which plant parts are more accurate for fire blight detection using LFIA. In this aspect, our study will be helpful for more effective and thoughtful diagnosis of fire blight in non-laboratory conditions”, Shyatesa Razo, PhD student at RUDN University.

###

Media Contact
Valeriya Antonova
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.pmpp.2021.101637

Tags: Agriculture
Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing Bilicocoon Phototherapy for Neonatal Jaundice

Assessing Bilicocoon Phototherapy for Neonatal Jaundice

October 9, 2025

CDK4/6 Inhibitors in Advanced Breast Cancer

October 9, 2025

Hydride Transfer Drives Thermochemical Heterolytic Hydrogenation

October 9, 2025

Global Mountain Vegetation Loss Threatens Biodiversity Conservation

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1152 shares
    Share 460 Tweet 288
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Bilicocoon Phototherapy for Neonatal Jaundice

CDK4/6 Inhibitors in Advanced Breast Cancer

Hydride Transfer Drives Thermochemical Heterolytic Hydrogenation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.