• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The absorption of an individual electrons captured on film

Bioengineer by Bioengineer
June 17, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Javier Marmolejo

Researchers at the University of Gothenburg have observed the absorption of a single electron by a levitated droplet with such a magnification that it is visible with the naked eye and can even be measured with a normal millimeter scaled ruler.

Matter in the universe is composed of elementary particles like electrons, protons, and neutrons. They are everywhere, but they are so small that the human eye cannot discern them. In the last century, physicists have proven the existence of these particles through different experiments, but in most cases the observation of the particles have been indirect.

– Electrons are one of these fundamental particles. In 1909, Robert Millikan proved that the charge of the electron is quantized. In other words, there exists a minimum, indivisible amount of charge. He demonstrated that the electron´s charge is quantized by letting hundreds of charged droplets fall in an electric field and then perform a statistical analysis of their motion.

An experiment with a single levitated drop

-Now we have created a modern version of this classical experiment by levitating a single droplet in air using a laser, says Javier Marmolejo, Ph.D. at the Department of physics at the University of Gothenburg.

In this experiment, the quantization of the electric charge is directly visible for the first time without advanced equipment or a complex statistical analysis.

– We trapped a drop using a laser inside a strong electric field and added individual electrons by exposing it to alfa radiation. The drop performed quantized jumps every time it absorbed one or a few electrons. By magnifying the image of the droplet using a single lens, we were able to see the effect of a single electron absorption and to measure the jumps with a ruler. The bright spot moved about one millimeter for every absorbed electron (see video).

The drop had a diameter of 29 micrometers, which roughly corresponds to the thickness of a thin human hair. Despite this, it contains around 3.7 x1015 negatively charged electrons.

– The feat is incredible when one considers that the effect of adding single electron to a droplet that already has 3 700 000 000 000 000 is visible with the naked eye.

Now that it is possible to “see the effect of a single electron”, a new opportunity emerges to better communicate science regarding elementary particles to the general public, the researchers comment.

###

Contact:

Javier Tello Marmolejo, doctoral student, Department of Physics, University of Gothenburg, e-mail. [email protected], phone: 070 017 53 19

Dag Hanstorp, professor, Department of Physics, University of Gothenburg, phone: 0766-22 91 41, 031-786 91 41, e-mail: [email protected]

Link to article in Scientific Reports, “Visualizing the electron’s quantization with a ruler” : http://www.nature.com/articles/s41598-021-89714-2

Video: Javier Marmolejo

Illustration: Javier Marmolejo

Facts about the experiment

A laser trap was used to levitate a silicone oil droplet in air. The trap consisted of a green laser with a wavelength of 532 nanometers that was directed upwards and focused by a lens with a focal distance of 100 mm. The focal point was placed between two electrodes placed in the center of the experimental chamber. The electrodes were parallel and separated by 1 mm. A 29 micrometer droplet was dropped into the laser beam, where it was trapped. Between the plates, a 666 V potential difference was applied which created a strong electric field. Alfa radiation was directed towards the almost uncharged droplet, ionizing the air around it. When the droplet gained or lost charge, the force applied by the electric field changed which in turn changed its position. The effects were magnified 73 times by a lens and projected onto a wall. With this magnification, the micrometric movements of the drop were observable with the naked eye. A common millimeter ruler was placed on the wall where the researchers could directly observe the number of electrons the drop gained as it jumped about 1 mm per added electron.

Media Contact
Javier Tello Marmolejo
[email protected]

Original Source

https://www.gu.se/nyheter/forskare-fangar-elektronens-hopp-pa-film

Tags: Molecular PhysicsMultimedia/Networking/Interface DesignNanotechnology/MicromachinesNuclear PhysicsOpticsParticle PhysicsTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Polystyrene Standards Impact Environmental Sample Quantification

August 4, 2025
Deep Learning Predicts Glioma 1p/19q Status

Deep Learning Predicts Glioma 1p/19q Status

August 4, 2025

Dairy Farming’s Carbon Footprint: Drained Peatlands Impact

August 4, 2025

Assessing Human Exposure to Nano- and Microplastics

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    54 shares
    Share 22 Tweet 14
  • Predicting Colorectal Cancer Using Lifestyle Factors

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polystyrene Standards Impact Environmental Sample Quantification

Deep Learning Predicts Glioma 1p/19q Status

Dairy Farming’s Carbon Footprint: Drained Peatlands Impact

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.