• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Diagnoses with Deepflash

Bioengineer by Bioengineer
June 9, 2021
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Würzburg

Information technology can make life easier in many areas – including research. In medicine, for example, it is still standard practice to evaluate microscopy images of tissue sections by hand. This is used, for example, to assess how many cancer cells are in a lymph node.

“You often sit in a dark room for hours counting the cells on an image captured with a fluorescence microscope. That costs an incredible amount of valuable time,” says Philipp Sodmann, who works in cardiac research at the University Hospital of Würzburg in Bavaria, Germany.

But now a new horizon is opening up for the life sciences: The new digital tool deepflash2 makes the analysis of microscopy images much easier. deepflash2 is freely available and based on machine learning methods.

Jury emphasizes on quality aspect

Matthias Griebel from the Chair of Information Systems and Business Analytics at the University of Würzburg developed the tool as part of his doctorate. The tool formed the foundation of the solution he developed together with medical scientist Philipp Sodmann for an international data science competition. In this competition, the team of the two from Würzburg was successful: in May 2021, it received the innovation award endowed with 10,000 US dollars and a gold medal from the online platform Kaggle.

The top-class jury with experts from medicine, biology, and artificial intelligence (AI) attested deepflash2 another quality: the program also recognizes ambiguities.

“In biology, not everything is black or white,” explains Matthias Griebel. It is not uncommon for researchers to doubt whether cells they see in a tissue section are still functional. In such cases, deepflash2 points this out: People have to look at this again! This is what makes the tool particularly innovative, according to the jury members.

Freely available for researchers

deepflash2 is still an insider’s tip for researchers involved in bio-image analysis. However, Matthias Griebel wants to use the excellent results in the data science competition as an opportunity to promote his tool.

Since it is an open-source tool, other researchers can use it free of charge in their browser or install it on their computer. In the meantime, Griebel is already working on further improving deepflash2 using the findings from the competition.

deepflash2 on Github: https://matjesg.github.io/deepflash2/

Applicable even without AI knowledge

Griebel, who studied business information systems, is doing his doctorate under Professor Christoph Flath. During the development of deepflash2, he attached great importance to the fact that researchers without AI expertise can also use the tool without any problems.

Users from medicine and life sciences must not understand the complicated processes behind the scenes. For them, according to Griebel, the most important thing is to make bio-image analysis faster and at the same time more reliable. To achieve this, an artificial neural network must be intensively trained using extensive data sets, says the Würzburg scientist.

Decisions are made by humans

In the end, however, it is humans who draw a conclusion from the images. This should reassure all those who fear that artificial intelligence will decide the weal and woe of medicine in the future. Philipp Sodmann emphasizes that this is not the case and will certainly never become the case soon.

Sodmann appeals to recognize the manifold possibilities of AI. The data science competition, for example, took place against the backdrop of the “Human BioMolecular Atlas Program” project launched in 2016. Its goal is to map and characterize every single one of the approximately 37 trillion human cells. This would be impossible without AI.

Prize for the best presentation

A total of around 1,200 teams from more than 50 countries submitted solutions for the Kaggle data science competition. Matthias Griebel and Philipp Sodmann landed in 10th place.

“Whereby the first places were decided in a neck-and-neck race,” says Griebel. The presentation of the project in front of an international audience was also exciting for him and his colleague. The two Würzburgers came out on top again: they also won the prize for the best presentation, in addition to the gold medal and the innovation prize.

Suitable for different clinical pictures

Matthias Griebel does not want to research in an ivory tower. It is important to him to develop tools that will ultimately help people. And perhaps even save lives.

If microscopy images can be evaluated faster and more reliably, a diagnosis can also be made more quickly. And this is true for very different diseases. Because the deepflash2 program is trainable, it can learn, for example, to recognize different functional tissue units. Thus, with the help of machine learning, the algorithm can be taught to identify the insulin-producing cells of the pancreas on an image.

###

Media Contact
Matthias Griebel
[email protected]

Original Source

https://www.uni-wuerzburg.de/en/news-and-events/news/detail/news/mit-deepflash-zur-diagnose-1/

Tags: cancerCell BiologyComputer ScienceDiagnosticsRobotry/Artificial IntelligenceSoftware EngineeringTechnology TransferTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Solving Forensic Mysteries: Genealogy’s Emerging Solutions

August 5, 2025
blank

Maternal Inflammation in Second Trimester Linked to Birth Risks

August 5, 2025

Why Tension Drives Short-Form Video Addiction

August 5, 2025

Reducing Inflammation to Shield Against Lupus Nephritis

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    70 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Solving Forensic Mysteries: Genealogy’s Emerging Solutions

Optimizing Bacillus cabrialesii HB7 for Saline Stress Relief

PeroCycle Appoints New CEO and Launches £4M Seed Round to Advance Decarbonization in Steelmaking

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.