• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

USTC constructs a multiplexed quantum repeater based on absorptive quantum memories

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chinese researchers realized an elementary link of a quantum repeater based on absorptive quantum memories (QMs) and demonstrated the multiplexed quantum repeater for the first time. On June 2nd?the work is published in Nature.

The fundamental task of a quantum network is to distribute quantum entanglement between two remote locations. However, the transmission loss of optical fiber has limited the distance of entanglement distribution to approximately 100 km on the ground. Quantum repeaters can overcome this difficulty by dividing long-distance transmission into several short-distance elementary links. The entanglement of two end nodes of each link is created firstly. Then the entanglement distance is gradually expanded through entanglement swapping between each link.

Previously, an elementary link of a quantum repeater has been realized in cold atomic ensembles and single quantum systems. These demonstrations are all based on emissive QMs, in which the entangled photons are emitted from QMs. Quantum repeaters constructed by emissive QMs have simple structures, but poor compatibilities. It is of great challenge to support deterministic entanglement sources and multiplexed operations simultaneously, which are two key technologies to enhance the entanglement distribution rate. Quantum repeaters based on absorptive QMs can overcome such limitation because they separate the quantum memories and the entangled photon sources.

The research team, led by Prof. LI Chuanfeng and Prof. ZHOU Zongquan from University of Science and Technology of China (USTC), focuses on the research of absorptive QMs based on rare-earth-ion-doped crystals. For this kind of QMs, the entanglement source can be flexibly selected, including deterministic entanglement sources, while remaining the capability of multiplexed operations, and therefore should be more efficient for quantum repeater applications. In this work, they used external entangled photon-pair sources (EPPSs) based on spontaneous parametric down-conversion and achieved heralded entanglement distribution between two absorptive QMs for the first time.

They built an elementary link with an intermediate station and two nodes at the ends. Each node contains an absorptive QM with a bandwidth of 1GHz and a bandwidth-matched EPPS. In each node, one entangled photon of each photon pair was stored in the “Sandwich-like” QM while the other was transmitted to the middle station for joint Bell-state measurement (BSM). A successful entanglement swapping operation was heralded by the successful click of BSM. The entanglement between two QMs 3.5 meters apart was established with a fidelity of approximately 80.4%, although there weren’t any direct interactions between two remote QMs. Four temporal modes were employed in this demonstration of an elementary link of a quantum repeater, accelerating the entanglement distribution rate by four times.

Prof. ZHOU Zongquan said: “The use of absorptive quantum memory is expected to achieve high efficiency quantum repeater and quantum network in the future, and further promote the communication between ‘Cowherd and Weaver Girl’ in the quantum world.”

This work provides a feasible roadmap for the development of practical quantum repeaters and lays the foundation for the construction of high-speed quantum networks. Reviewers pointed out”The present work focuses on the ensemble approach, which has a number of advantages in the context of quantum repeater applications, multiplexing for instance”. They highly recommend this work as”a significant accomplishment that will form the basis for further research” and “a major step forward in the development of a practical quantum repeater”.

Prof. LI Chuanfeng said that the team will continue to improve the indicators of absorptive QM, ” we will use deterministic entanglement source to greatly improve the entanglement distribution rate, and to achieve practical quantum repeaters beyond direct transmission of optical fiber.”

LIU Xiao and HU Jun from CAS Key Laboratory of Quantum Information and CAS Center for Excellence in Quantum Information and Quantum Physics are the co-first authors. The corresponding authors are Prof. LI Chuanfeng and Prof. ZHOU Zongquan.

For future developments, the research team will continue to improve the performances of the absorptive QMs, and adopt deterministic entanglement sources, so as to greatly enhance the entanglement distribution rate, and to achieve a practical quantum repeater that outperform the direct transmission of photons.

###

Media Contact
Jane FAN Qiong
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-021-03505-3

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Oral Fat Sensitivity with Pure Milk Emulsions

Impact of Nasal Obstruction on Breathing Flow

Revolutionary Numerical Method for PEMFC Model Inversion

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.