• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Searching a sea of ‘noise’ to find exoplanets — using only data as a guide

Bioengineer by Bioengineer
December 20, 2016
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Illustration by Michael Helfenbein/Yale University

New Haven, Conn. – Yale researchers have found a data-driven way to detect distant planets and refine the search for worlds similar to Earth.

The new approach, outlined in a study published Dec. 20 in The Astronomical Journal, relies on mathematical methods that have their foundations in physics research. Rather than trying to filter out the signal "noise" from stars around which exoplanets are orbiting, Yale scientists studied all of the signal information together to understand the intricacies within its structure.

"It requires nothing but the data itself, which is a game changer," said senior author John Wettlaufer, the A.M. Bateman Professor of Geophysics, Mathematics and Physics at Yale. "Moreover, it allows us to compare our findings with other, traditional approaches and improve whatever modeling assumptions they use."

The search for exoplanets — planets found outside our own solar system — has increased dramatically in recent years. The effort is motivated, in part, by a desire to discover Earth analogs that might also support life.

Scientists have employed many techniques in this effort, including pulsar timing, direct imaging, and measuring the speed at which stars and galaxies move either toward or away from Earth. Yet each of these techniques, individually or in combination, presents challenges.

Primarily, those challenges have to do with eliminating extraneous data — noise — that doesn't match existing models of how planets are expected to behave. In this traditional interpretation of noise, searches can be hampered by data that obscures or mimics exoplanets.

Wettlaufer and his colleagues decided to look for exoplanets in the same way they had sorted through satellite data to find complex changes in Arctic sea ice. The formal name for the approach is "multi-fractal temporally weighted detrended fluctuation analysis" (MF-TWDFA). It sifts data at all time scales and extracts the underlying processes associated with them.

"A key idea is that events closer in time are more likely to be similar than those farther away in time," Wettlaufer said. "In the case of exoplanets, it is the fluctuations in a star's spectral intensity that we are dealing with."

The use of multi-fractals in science and mathematics was pioneered at Yale by Benoit B. Mandelbrot and Katepalli Sreenivasan. For expertise in the search for exoplanets, the researchers consulted with Yale astrophysicist Debra Fischer, who has pioneered many approaches in the field.

The researchers confirmed the accuracy of their methodology by testing it against observations and simulation data of a known planet orbiting a star in the constellation Vulpecula, approximately 63 light years from Earth.

###

Sahil Agarwal, a graduate student in the Yale Program in Applied Mathematics, is first author. Fabio Del Sordo, a joint postdoctoral fellow at Yale and in Stockholm, is co-author.

Grants from NASA and the Swedish Research Council helped to fund the research, as did a Royal Society Wolfson Research Merit Award.

Media Contact

Jim Shelton
james.shelton@yale.edu
203-432-3881
@yale

http://www.yale.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    52 shares
    Share 21 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.