• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UMD team demonstrates swarm of photons that somersault in lockstep

Bioengineer by Bioengineer
May 4, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hancock, Zahedpour, and Milchberg/University of Maryland

Spinning or rotating objects are commonplace, from toy tops, fidget spinners, and figure skaters to water circling a drain, tornadoes, and hurricanes.

In physics, there are two kinds of rotational motion: spin and orbital. Earth’s motion in our solar system illustrates these; the daily 360-degree rotation of Earth around its own axis is spin rotation, while Earth’s yearly trip around the sun is orbital rotation.

The quantity in physics defined to describe such motion is angular momentum (AM). AM is a conserved quantity: given an initial amount of it, it can be broken up and redistributed among particles such as atoms and photons, but the total AM must remain the same. AM is also a vector: it is a quantity that has a direction, and this direction is perpendicular to the plane in which the rotational circulation occurs.

For particles of light in laser beams – photons – these two kinds of AM are present. Photons have spin, but don’t rotate on their own axes; instead, the spin angular momentum (SAM) comes from the rotation of the photon’s electric field, and SAM can only point forward or backward with respect to the beam direction.

Photons in laser beams can also have orbital angular momentum (OAM). The simplest laser beam in which photons have OAM is the donut beam: if you shine such a beam on the wall, it will look like a bright donut or ring with a dark center. The OAM vector also points forward or backward, and the OAM is the same for every photon in the beam.

In a paper published in the journal Optica, University of Maryland Professor Howard Milchberg and research group demonstrate the surprising result that photons in vacuum can have OAM vectors pointing sideways, at 90 degrees to the direction of propagation – a result literally orthogonal to the decades-long expectation that OAM vectors could only point forward or backward.

The research team, which in addition to Milchberg includes graduate student and lead author Scott Hancock and postdoctoral researcher Sina Zahedpour, did this by generating a donut pulse they dub an “edge-first flying donut” (its more technical name is spatio-temporal optical vortex, or STOV). Here, the donut hole is oriented sideways, and because the rotational circulation now occurs around the ring, the AM vector points at right angles to the plane containing the ring. To prove that this sideways-pointing OAM is associated with individual photons and not just the overall shape of the flying donut, the team sent the pulse through a nonlinear crystal to undergo a process called second harmonic generation, where two red photons are converted into a single blue photon with double the frequency. This reduces the number of photons by a factor of 2, which means each blue photon should have twice the sideways-pointing OAM – which is exactly what the team’s measurements showed. The AM of the flying donut or STOV is the composite effect of a swarm of photons somersaulting in lockstep.

There are numerous potential applications of STOVs. For example, the AM conservation embodied by somersaulting photons may make STOV beams resistant to breakup by atmospheric turbulence, with potential application to free-space optical communications. In addition, because STOV photons must occur in pulses of light, such pulses could be used to dynamically excite a wide range of materials or to probe them in ways that exploit the OAM and the donut hole.

“STOV pulses could play a big role in nonlinear optics,” says Milchberg, “where beams can control the material they propagate in, enabling novel applications in beam focusing, steering, and switching.”

###

The A. James Clark School of Engineering at the University of Maryland serves as the catalyst for high-quality research, innovation, and learning, delivering on a promise that all graduates will leave ready to impact the Grand Challenges of the 21st century. The Clark School is dedicated to leading and transforming the engineering discipline and profession, to accelerating entrepreneurship, and to transforming research and learning activities into new innovations that benefit millions. Visit us online at eng.umd.edu.

Media Contact
Kara Stamets
[email protected]

Original Source

https://eng.umd.edu/news/story/somersaulting-photons

Related Journal Article

http://dx.doi.org/10.1364/OPTICA.422743

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

AI Advances Enhance Sustainable Recycling of Livestock Waste

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025
Crafting Yogurt Using Ants: A Scientific Innovation

Crafting Yogurt Using Ants: A Scientific Innovation

October 3, 2025

Pd-Catalyzed Synthesis of E/Z Trisubstituted Cycloalkenes

October 3, 2025

Hanbat National University Researchers Develop Innovative Method to Enhance Solid Oxide Fuel Cell Efficiency

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance COâ‚‚ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.