• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Reversal of blood droplet flight predicted, captured in experiments

Bioengineer by Bioengineer
April 20, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The impact of gun muzzle gases on blood backspatter captured, implications for forensic analysis of bloodstain patterns

IMAGE

Credit: Gen Li, Nathaniel Sliefert, James B. Michael, and Alexander L. Yarin

WASHINGTON, April 20, 2021 — Forensic science includes the analysis of blood backspatter involved in gunshot wounds, but scientific questions about the detailed role of fluids in these situations remained unresolved.

To search for answers about how blood droplets from a gunshot wound can reverse direction while in flight, University of Illinois at Chicago and Iowa State University researchers explored the influence of propellant gases on blood backspatter.

In Physics of Fluids, from AIP Publishing, the researchers report using numeric modeling to capture the behavior of gun muzzle gases and predict the reversal of blood droplet flight, which was captured experimentally. Their experiments also show the breakup of blood droplets, a future extension of their modeling efforts.

Propellant gases from gunpowder issue from the gun barrel at high speed and form turbulent vortex rings, which can be visualized by high-speed shadowgraph images, like those used to capture flow structures of supersonic aircraft or spacecraft.

A penetrating bullet tends to spatter blood droplets from the victim backward, toward the shooter, but a turbulent vortex ring of muzzle gases moving from the shooter toward the victim can reverse the flight of the droplets.

The researchers’ prior work focused on modeling the trajectories of blood droplets that lead to bloodstains that end up being analyzed by forensics experts.

“We used proper fluid dynamics models for the aerodynamic drag, which led to significant improvements, but concluded muzzle gases should also be included and can dramatically alter the formation and size of blood droplets,” said Alexander Yarin, a distinguished professor at the University of Illinois at Chicago.

In their most recent work, the researchers identified an additional feature at play beyond deflection and reversal of blood spatter back toward the victim: the secondary breakup of formed droplets in flight, identified by James Michael’s group at Iowa State University.

“We concluded that forensic analysis of formed bloodstains should account for additional uncertainty in the trajectories of droplets, if muzzle gas interactions are present for short-range shooting,” said Yarin. “And while determination of the origin of droplets is often a desirable outcome of forensic analysis, muzzle gas interactions can confound interpretation.”

The researchers’ imaging results made it clear “the size of droplets can be dramatically impacted through the secondary breakup induced by the muzzle gas wind,” said Yarin. “We’re working to analyze this behavior using bloodstain patterns with Drs. James Michael and Daniel Attinger and their team at Iowa State University.”

###

The article “Experimental and numerical study of blood backspatter interaction with firearm propellant gases” is authored by Nathaniel Sliefert, Gen Li, James B. Michael, and Alexander L. Yarin. It will appear in Physics of Fluids on April 20, 2021 (DOI: 10.1063/5.0045219). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0045219.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0045219

Tags: Chemistry/Physics/Materials SciencesLaw EnforcementLaw Enforcement/JurisprudenceScience/Health/Law
Share12Tweet8Share2ShareShareShare2

Related Posts

Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025
blank

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stable Sodium-Ion Battery Cathode: K-rich Copper Hexacyanoferrate

Revolutionizing Lithium-Ion Battery Lifespan Predictions with AI

Alleviating ECT Anxiety Through Progressive Muscle Relaxation

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.